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Tunable IIR Digital FiltersTunable IIR Digital Filters

• We have described earlier two 1st-order and
two 2nd-order IIR digital transfer functions
with tunable frequency response
characteristics

• We shall show now that these transfer
functions can be realized easily using
allpass structures providing independent
tuning of the filter parameters
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Tunable Tunable Lowpass Lowpass andand
HighpassHighpass Digital Filters Digital Filters

• We have shown earlier that the 1st-order
lowpass transfer function

and the 1st-order highpass transfer function

are doubly-complementary pair
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Tunable Tunable LowpassLowpass and and
HighpassHighpass Digital Filters Digital Filters

• Moreover, they can be expressed as

where

is a 1st-order allpass transfer function
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Tunable Tunable LowpassLowpass and and
HighpassHighpass Digital Filters Digital Filters

• A realization of              and               based
on the allpass-based decomposition is
shown below

• The 1st-order allpass filter can be realized
using any one of the 4 single-multiplier
allpass structures described earlier
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Tunable Tunable LowpassLowpass and and
HighpassHighpass Digital Filters Digital Filters

• One such realization is shown below in
which the 3-dB cutoff frequency of both
lowpass and highpass filters can be varied
simultaneously by changing the multiplier
coefficient α
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TunableTunable Lowpass Lowpass and and
HighpassHighpass Digital Filters Digital Filters

• Figure below shows the composite
magnitude responses of the two filters for
two different values of α
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Tunable Tunable Bandpass Bandpass andand
BandstopBandstop Digital Filters Digital Filters

• The 2nd-order bandpass transfer function

and the 2nd-order bandstop transfer
function

also form a doubly-complementary pair
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TunableTunable Bandpass Bandpass and and
BandstopBandstop Digital Filters Digital Filters

• Thus, they can be expressed in the form

where

is a 2nd-order allpass transfer function
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TunableTunable Bandpass Bandpass and and
BandstopBandstop Digital Filters Digital Filters

• A realization of              and               based
on the allpass-based decomposition is
shown below

• The 2nd-order allpass filter is realized using
a cascaded single-multiplier lattice structure
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TunableTunable Bandpass Bandpass and and
BandstopBandstop Digital Filters Digital Filters

• The final structure is as shown below

• In the above structure, the multiplier β
controls the center frequency and the
multiplier α controls the 3-dB bandwidth
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TunableTunable Bandpass Bandpass and and
BandstopBandstop Digital Filters Digital Filters

• Figure below illustrates the parametric
tuning property of the overall structure
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

Realization of an All-pole IIR Transfer
Function

• Consider the cascaded lattice structure
derived earlier for the realization of an
allpass transfer function
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• A typical lattice two-pair here is as shown
below

• Its input-output relations are given by
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• From the input-output relations we derive
the chain matrix description of the two-pair:

• The chain matrix description of the
cascaded lattice structure is therefore
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• From the above equation we arrive at

using the relation                        and the
relations
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• The transfer function                      is thus an
all-pole function with the same denominator
as that of the 3rd-order allpass function          :
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

Gray-Markel Method
• A two-step method to realize an Mth-order

arbitrary IIR transfer function

• Step 1: An intermediate allpass transfer
function                                                    is
realized in the form of a cascaded lattice
structure
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Step 2: A set of independent variables are
summed with appropriate weights to yield
the desired numerator

• To illustrate the method, consider the
realization of a 3rd-order transfer function
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• In the first step, we form a 3rd-order allpass
transfer function

• Realization of           has been illustrated
earlier resulting in the structure shown below

)(/)()(/)()( zDzDzzXzYzA 3
1

3
3

113
−−==

)(zA3



Copyright © 2001, S. K. Mitra20

IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Objective: Sum the independent signal
variables     ,     ,     , and     with weights
as shown below to realize the desired
numerator
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• To this end, we first analyze the cascaded
lattice structure realizing and determine the
transfer functions                     ,                     ,
and

• We have already shown
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• From the figure it follows that

and hence
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• In a similar manner it can be shown that

• Thus,

• Note:  The numerator of                     is
precisely the numerator of the allpass
transfer function
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• We now form
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Substituting the expressions for the various
transfer functions in the above equation we
arrive at
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Comparing the numerator of
with the desired numerator          and
equating like powers of        we obtain
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Solving the above equations we arrive at
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Example - Consider

• The corresponding intermediate allpass
transfer function is given by
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• The allpass transfer function           was
realized earlier in the cascaded lattice form
as shown below

• In the figure,
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• Other pertinent coefficients are:

• Substituting these coefficients in

4541667.0,2.0,18.0,4.0 '
1321 =−=== dddd

,02.0,36.0,44.0,0 3210 ==== pppp
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IIR Tapped Cascaded LatticeIIR Tapped Cascaded Lattice
StructuresStructures

• The final realization is as shown below

352.0,02.0 21 =α=α
19016.0,2765333.0 43 −=α=α

2.0,2708333.0,3573771.0 321 −=== kkk
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Tapped Cascaded LatticeTapped Cascaded Lattice
Realization Using MATLABRealization Using MATLAB

• Both the pole-zero and the all-pole IIR
cascaded lattice structures can be developed
from their prescribed transfer functions
using the M-file tf2latc

• To this end, Program 6_4 can be employed
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Tapped Cascaded LatticeTapped Cascaded Lattice
Realization Using MATLABRealization Using MATLAB

• The M-file latc2tf implements the
reverse process and can be used to verify
the structure developed using tf2latc

• To this end, Program 6_5 can be employed
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• An arbitrary Nth-order FIR transfer function
of the form

can be realized as a cascaded lattice structure
as shown below
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• From figure, it follows that

• In matrix form the above equations can be
written as

where
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• Denote

• Then it follows from the input-output
relations of the m-th two-pair that
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• From the previous equation we observe

where we have used the facts

• It follows from the above that

•                   is the mirror-image of
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• From the input-output relations of the m-th
two-pair we obtain for m = 2:

• Since           and           are 1st-order
polynomials, it follows from the above that

    and           are 2nd-order polynomials
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• Substituting                                 in the two
previous equations we get

• Now we can write

•           is the mirror-image of
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• In the general case, from the input-output
relations of the m-th two-pair we obtain

• It can be easily shown by induction that

•   is the mirror-image of
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• To develop the synthesis algorithm, we
express               and                in terms of

       and             for
arriving at
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• Substituting the expressions for

and

in the first equation we get
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• If we choose               , then
reduces to an FIR transfer function of order

   and can be written in the form

where
• Continuing the above recursion algorithm,

all multiplier coefficients of the cascaded
lattice structure can be computed
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• Example - Consider

• From the above, we observe
• Using

we determine the coefficients of           :
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• As a result,

• Thus,
• Using

we determine the coefficients of           :
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FIR Cascaded LatticeFIR Cascaded Lattice
StructuresStructures

• As a result,
• From the above, we get
• The final recursion yields the last multiplier

coefficient
• The complete realization is shown below
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FIR Cascaded LatticeFIR Cascaded Lattice
Realization Using MATLABRealization Using MATLAB

• The M-file tf2latc can be used to
compute the multiplier coefficients of the
FIR cascaded lattice structure

• To this end Program 6_6 can be employed
• The multiplier coefficients can also be

determined using the M-file poly2rc
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