Tunable IR Digital Filters

* \WWe have described earlier two 1st-order and
two 2nd-order |IR digital transfer functions
with tunable frequency response
characteristics

e \We shall show now that these transfer
functions can be realized easily using
allpass structures providing independent
tuning of the filter parameters
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Tunable Lowpass and
Highpass Digital Filters

We have shown earlier that the 1st-order
lowpass transfer function

-1
HLp(Z)=1_a£ 1+ 7 1)

2 \1-az
and the 1st-order highpass transfer function
1+of 1-z+
H Z) =
P (2) 2 (l—az_lj
are doubly-complementary pair
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Tunable Lowpass and
Highpass Digital Filters

 Moreover, they can be expressed as
Hip(2) = 21+ A2)

1

2

Hup(2) = [1- A(2).
where P
Z) =
A(2) 1-oz+t

IS a 1st-order allpass transfer function

Copyright © 2001, S. K. Mitra



Tunable Lowpass and
Highpass Digital Filters

e A redizationof H| p(z) and Hyp(2) based
on the allpass-based decomposition is
shown below N

1 (D H, ()
* Al(Z) A—HHF(E)

e The l1st-order aIIpassfiI_ter can berealized
using any one of the 4 single-multiplier
allpass structures described earlier
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Tunable Lowpass and
Highpass Digital Filters

One such realization is shown below In
which the 3-dB cutoff frequency of both
lowpass and highpass filters can be varied
simultaneously by changing the multiplier
coefficient a

H, ()

=I\l-"“—1 ®
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Tunable Lowpass and
Highpass Digital Filters

* Figure below shows the composite
magnitude responses of the two filters for
two different values of a

1

©
(o4

Magnitude
o o
H o

Copyright © 2001, S. K. Mitra



Tunable Bandpass and
Bandstop Digital Filters

he 2nd-order bandpass transfer function

. 52
HBP(Z):1 oc[ 1-7 )

2 (1-Bl+a)zt+0z?
and the 2nd-order bandstop transfer

function
1+ 1-Bz 1+ 2772
Hpc(2) =
as (2 2 (1—B(1+ oc)zl+oczzj
also form a doubly-complementary pair
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Tunable Bandpass and

Bandstop Digital Filters
hus, they can be expressed in the form
Hep(2) = [1- Ay(2)

Hps(2) = S[1+ Ay(2)

a—Pl+oa)zt+z72

1-B(l+a)zt+az?

Is a2nd-order allpass transfer function

Ay(2) =
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Tunable Bandpass and
Bandstop Digital Filters

* A realization of Hgp(2) and Hgg(2) based
on the allpass-based decomposition is

shown below

1

=
[L
=

1
4

Hpg(2)

HEP(Z)

e The 2nd-order allpass filter isrealized using
a cascaded single-multiplier lattice structure
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Tunable Bandpass and
Bandstop Digital Filters

e Thefinal structureis as shown below

 Inthe above structure, the multiplier 3
controls the center frequency and the
multiplier oo controls the 3-dB bandwidth
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Tunable Bandpass and
Bandstop Digital Filters

e Figure below illustrates the parametric
tuning property of the overall structure

B=05
1 e ‘ 1 ‘ -
-~ =04 ~— p=08
0.8 — a =005 0.8 — p=01 |-
(0] (0]
S 0.6 g 0.6
2 0.47 E 0.47
0.2 0.2
0 [E— i e
0 0.2 0.4 0.6 0.8 1 0.8 1

olt olt
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IR Tapped Cascaded Lattice
Structures

Realization of an All-pole | IR Transfer
Function

e Consider the cascaded | attice structure
derived earlier for the realization of an
allpass transfer function

P
—k3
Aiy(z)—
3(2 ks
Z
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IR Tapped Cascaded Lattice
Structures

o A typical |attice two-pair here s as shown
below

W...,(2) —@ —— W_(2)
—k”]-
4

Sm+1(z) ) I e Sm(Z)

pL

o |tsinput-output relations are given by
Wi (2) =Wip1(2) — Ky Z 'Sin(2)
Smi1(2) = kyWin(2) + 2715,(2)
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IR Tapped Cascaded Lattice
Structures

* From the input-output relations we derive
the chain matrix description of the two-pair:

W.a(2)]_[1 kz1[W(>)
Sa@] |k 1 | S(2_

e The chain matrix description of the
cascaded |attice structure is therefore

[Xl(z)} 1 kezt| 1 k,z1l1 Kzt [\Nl(z)}
M2 kg z?t ke zt |k zt LS(2
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IR Tapped Cascaded Lattice
Structures

* From the above eguation we arrive at
X1(2) ={1+[ky (1+ k) + koks] Z™H
+[ko + kiko (1+ kp)] 272 + K3z 2} W (2)
= (1+ dyz 1+ dyz % + d3z 3)W(2)
using therelation S;(z) =W, (z) and the
relations
kg =0dp, ky=d;, k3=d3

15
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IR Tapped Cascaded Lattice
Structures

» Thetranster function W;(z2)/ X4(z) Isthus an
all-pole function with the same denominator
as that of the 3rd-order allpass function Ag(2):

Wi(2) _ 1

X1(2) 1+0d, 7t +doz 2 +dyz 3

16
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IR Tapped Cascaded Lattice

Structures

Gray-Markel Method

e A two-step method to realize an Mth-order
arbitrary |IR transfer function

H(z) =Ry (2)/ Dy (2)

o Step 1. An intermediate allpass transfer
function Ay (2) = 2 M Dy (z71) /Dy (2) is
realized in the form of a cascaded lattice
structure
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IR Tapped Cascaded Lattice
Structures

o Step 2: A set of independent variables are
summed with appropriate weightsto yield
the desired numerator Py, (2)

e TolIllustrate the method, consider the
realization of a 3rd-order transfer function
H(2) = PS(Z) _ Po plz_l'l' p22_2 T p32_3

DB(Z) 1+ dlz_l -+ d22_2 + d3z_3
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IR Tapped Cascaded Lattice
Structures

e Inthefirst step, we form a 3rd-order allpass
transfer function

Ag(2) =Yi(2)/ X1(2) = 2°D3(z ")/ D3(2)

» Realization of Ag(2) has been illustrated
earlier resulting in the structure shown below

" N
ks & -y
As(z)—
@ ks k> k1
-1 ‘ —1 —1
R |1 TH , |1 e R
b &)
4 53 4 SE 4 Sl
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IR Tapped Cascaded Lattice
Structures

* Objective: Sum the independent signal
variables Y}, S, S,, and S;with weights{e;}
as shown below to realize the desired
numerator Ps(2)

Wi W Wy
Xl—b@: NF)— E)—
—k3 —k; —ky
ky %) k1
Y -1 -1 -1
1 z |‘_‘ 54 z |’_‘S2 z |‘ 1 Sl

oL 1:7 ol §z Ol Oy
W1) N+ :%:—b Y,
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IR Tapped Cascaded Lattice
Structures

 Tothisend, wefirst analyze the cascaded
|attice structure realizing and determine the
transfer functions $y(z)/ X4(2) , $(2)/ X4(2),

and $3(2)/ X4(2)

W W, W

X & uan D
iy ke K
As(z)—
T ks k|
Yl z_l L L :

 We have already sthown |
S(2) _ 1
X1(z) Di(2)
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IR Tapped Cascaded Lattice
Structures
 From thefigure it follows that

S,(2) = (k + 2 1)S(2) = (d] + Z ) S(2)
and hence
Sy(2) _dj+z°
X1(z2) D3(2)
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IR Tapped Cascaded Lattice
Structures

e |nasimilar manner it can be shown that

Si(2) =(dy + thz "+ 2 9)S(2)

Sy(z2) do+chz 4772
X1(2) D3(2)
* Note: The numerator of §(z)/ X4(2) IS

precisely the numerator of the allpass
transfer function Ai(z) = §(2)/W (2)

e Thus,

23

Copyright © 2001, S. K. Mitra



IR Tapped Cascaded Lattice

Structures
e \WWe now form
Yo(2) _ , Yi(2) S3(2) Sy (2) S(2)
%@~ A2t %2 %) T B xan) T % x(2
Xl—i% » Ws ;—T-: :WE j? :Wl
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IR Tapped Cascaded Lattice
Structures

o Substituting the expressions for the various
transfer functions in the above equation we
arrive at

aq(d3 + dzz + dlz +77%)
Y5(2) +a2(d2+dlz Ly )+a3(d1+z Htay

X1(2) D3(2)
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IR Tapped Cascaded Lattice
Structures

« Comparing the numerator of Y,(z2)/ X;(2)
with the desired numerator P;(z) and

equating like powers of z™* we obtain
o3 + 05 + a3y + a4 = Py

ond, +aoth +az = py

a1t +ar, = ps

= P
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IR Tapped Cascaded Lattice
Structures
« S0lving the above equations we arrive at

a3 = Py — oty — a0y

Ay = OO — Olld3 — 0[2dl2 — 0!3d£
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IR Tapped Cascaded Lattice
Structures
 Example - Consider

P(z) 0.44z1+0.362z°%+0.02273
Dy(z2) 1+0.4z1+0.18z22%-02z73

* The corresponding intermediate allpass
transfer function is given by

z3D3(z1) -0.2+0.18z21+0.0.42%+23

H(2) =

As(2) =

D3(2) 1+0.4z1+0.18272-0.2273
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IR Tapped Cascaded Lattice
Structures

» Theallpasstransfer function Ag(z) was
realized earlier in the cascaded lattice form
as shown below

Xl__’k@‘ #W?’ :“f—\ 2 _}-f( > »

3 —h2 1

A= hg g k, ky |
1 . 1 1

* Inthefigure,

ks=d;=-02, Kk,=d,=0.2708333
k, = d; =0.3573771
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IR Tapped Cascaded Lattice
Structures

o Other pertinent coefficients are:

d;=0.4, d, =0.18, d3=-0.2, d, =0.4541667
Po=0, py=0.44, p,=0.36, p3=0.02,

o Substituting these coefficientsin

az = pp—oqdy — a0y

ap= Po— 0[1d3 — 0[2d'2 — Ole:{

Copyright © 2001, S. K. Mitra
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IR Tapped Cascaded Lattice
Structures

a1 =0.02, a,=0.352
a3 =0.2765333, a4 =—-0.19016

0 Theflnal realization 1S as shown below

W5 Wy

X1 & “* W) — WF)r—
—k3 —k; —ky
ks k> k1
¥) Z |‘—‘ - |’—‘ S z |“* S1

83

N mgrg mg %g_‘ .
k, =0.3573771, k, =0.2708333, ky = 0.2
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Tapped Cascaded Lattice
Realization Using MATLAB

* Both the pole-zero and the all-pole | IR
cascaded |attice structures can be devel oped
from their prescribed transfer functions
using the M-filet f 2| at c

e Tothisend, Program 6 4 can be employed
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Tapped Cascaded Lattice
Realization Using MATLAB

« TheM-filel at c2tf implementsthe

reverse process and can be used to verify
the structure developed usingt f 2| at c

e Tothisend, Program 6 5 can be employed
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FIR Cascaded Lattice
Structures

 An arbitrary Nth-order FIR transfer function
of theform

N _
Hy (2) =1+ Zn:1 Pz "

can be realized as a cascaded lattice structure

as shown below

X -
Xy(z) - f‘fl{zj o {fgt’zl X3(z) ff,a.r_lt'z,l lfid
k ko kA kyn
k1 ko ky ky
-1 -1 ) PO AN Ay T — -t
- (& A N & ?
Yi(z) Ya(z) Yalz) Y1z Yyfz)
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FIR Cascaded Lattice
Structures

* From figure, it follows that

Xm(2) = Xm-1(2) + knZ Yin-1(2)
Yin(2) = kin Xm-1(2) + 2 4 (2)
 |n matrix form the above equations can be

written as
[ Xm(z)_

 Ym(2)

1 k.z1lf

Xm1(2)

-1
Knw Z

wherem=212,...,N

 Ymea(2)
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FIR Cascaded Lattice

Structures
e Denote
~ Xm(2) ~ Yn(2)
D %@ T 2

* Then it follows from the input-output
relations of the m-th two-pair that

Hm(2) = Him1(2) + knZ "Gy 1(2)
Gm(2) = kmHm-1(2) + 277G a(2)

36
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FIR Cascaded Lattice
Structures

e From the previous equation we observe
Hi(2) =1+kzt, G(2)=k+z7
where we have used the facts
Ho(2) = Xo(2)/ Xp(2) =1
Go(2) =Yp(2)/ Xo(2) = Xo(2)/ Xo(2) =1
o |t followsfrom the above that
Gi(2) =2 H(zky +1) = ZHy (271

«mmm) G;(2) isthe mirror-image of Hq(2)

37
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FIR Cascaded Lattice
Structures

e From the input-output relations of the m-th
two-pair we obtain for m= 2:

Ho(2) = Hi(2) + k2'Gy(2)
G2(2) =koHy(2) + 27Gy(2)

e SinceH,(z) and G;(2) are 1st-order
polynomials, it follows from the above that
H»(2z) and G, (z) are 2nd-order polynomials
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FIR Cascaded Lattice

Structures
e SubgtitutingG,(z) = z*H,(z 1) inthetwo
previous eguations we get
H(2) = Hy(2) + Koz 2Hy(z7Y)
Gy(2) =koHy(2) + 2 ?Hy(z7h)

e Now we can write
Gy(2) =kyHy(2) + Z2H (27

= 727[k,2°H,(2) + H{(z )] = 2 %H,(z})
» == G,(2) isthe mirror-image of H,(2)
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FIR Cascaded Lattice
Structures

* |Inthe general case, from the input-output
relations of the m-th two-pair we obtain

Hn(2) = Hpa(2) + kmz_le—l(Z)
Gm(2) = kmHm-1(2) + 277G a(2)
* |t can be easlly shown by induction that
Gn(2)=z"H,(z?1), m=12..,N-1N
o =) G,(2) isthe mirror-image of H,(2)
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FIR Cascaded Lattice
Structures

e To develop the synthesis algorithm, we
express H,,_1(z) and G,,_1(2) in terms of
H.(z) and Gy (2) form=N,N-1...,2,1

arriving at
HN—1(Z)—(1_k2 { Hn (2) —knGn (2))
Gn-1(2) = -{-knHn (2)+ G (2)}

(1 k2)Z

41
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FIR Cascaded Lattice
Structures
o Substituting the expressions for

Hy(2) =1+ 3N ppz "
and

Gn(2) =z NHy(zh) = Zn Opnz . 7N
In the fi rst equation we get

HN—l(Z) - k2 {(1- kN pN)"‘Z n=1 (pn n pN—n)Z_n

+(pn —kn)Z N}
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FIR Cascaded Lattice
Structures

* |f we chooseky = py» then Hy_1(2)
reduces to an FIR transfer function of order
N —1and can be written in theform

HN 1(2) 1+Zn -1 pn

where pj, = ™ 15':'(5'\' 1. 1<n<N-1

e Continuing the above recursion al gorithm,
all multiplier coefficients of the cascaded
|attice structure can be computed
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FIR Cascaded Lattice
Structures
o Example- Consider
H4(2) =1+1.2271+1.12272+0.1223-0.082 *

e From the above, we observe k; = p, =—0.08
e Using

Pn = p”_‘f“g“—” ,1<n<3
1-k2

we determine the coefficients of H5(2):
p3 =0.2173913, p, =1.2173913

P =1.2173913
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FIR Cascaded Lattice
Structures

e Asaresult,

Ha(2) =1+1.21739137 1 +1.21739137 2
+0.2173913z3

» Thus, kg = p3 =0.2173913

e Using

Dl = p”_f?"gz—” 1<n<?2
1K

we determine the coefficients of H,(2):
P> =10, p;=10
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FIR Cascaded Lattice
Structures

Asaresult, H,(2)=1+z 1+ 772

From the above, we get k, = p5 =1
Thefinal recursion yields the last multiplier
coefficient k; = p; /(1+k,) =0.5

The complete realization 1s shown bel OV\;

Xofz)

ky = 0.5, k =1, ka =0. 2173913 k, =—0.08
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FIR Cascaded Lattice
Realization Using MATLAB

e TheM-filet f 2| at ¢ can be used to
compute the multiplier coefficients of the
FIR cascaded |attice structure

e Tothisend Program 6 6 can be employed

 The multiplier coefficients can also be
determined using the M-file pol y2r c
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