Module 3 : Sequence Components and Fault Analysis

Lecture 13 : Sequence Modeling (Tutorial)

Objectives

In this lecture we will solve tutorial problems on fault analysis in sequence domain

- Per unit values of all element impedance in the given system.
- Reduction of the circuit for the given fault locations.
- S-L-G fault current for the given system.
- 1. Fig 13.1 shows the single line diagram of a 13.8kV system connected to a 480V bus through a 13.8kV/480V

transformer. Two motor loads of 400hp and 600hp are connected to the bus through three parallel three core copper cables. If a 3 phase bolted fault occurs at F_1 , compute the fault currents. Repeat the calculations for fault at F_2 .

Ans: Let us take base power as 1000kVA and base voltage as 480V.

$$Z_{s} = \frac{base \, kVA}{short \, circuit \, kVA} = \frac{1000}{600 \times 10^{3}} = 0.00166 pu$$
$$\frac{X_{s}}{R_{s}} = 15 \quad Z_{s} = \sqrt{R_{s}^{2} + X_{s}^{2}} \text{ or } Z_{s}^{2} = R_{s}^{2} + X_{s}^{2}$$

1. i.e. $(0.00166)^2 = R_s^2 + (15R_s)^2$

The per unit value of
$$R_T = \frac{1}{Transformer \, kVA} \times \frac{1}{100}$$

$$= \frac{1000}{1000} \times \frac{1.21}{100} = 0.0121 pu$$

Per unit value of $Z_T = \frac{1000}{1000} \times \frac{5.75}{100} = 0.0575 pu$
 $X_T = \sqrt{Z_T^2 - R_T^2} = 0.0562 pu$
i.e. Z_T in pu = 0.0121 + j0.0562

Cable C_1 Modeling

Length of cable $C_1 = 500m$, Resistance of one conductor per km = 0.178 Ω Reactance of one conductor per km = 0.108 Ω

Since, three conductors are in parallel, equivalent resistance and reactance for 500m length is given by,

$$R_{e1} = \frac{0.178}{3} \times \frac{500}{1000} = 0.0297\Omega$$
$$R_{e1} = \frac{0.108}{3} \times \frac{500}{1000} = 0.018\Omega$$

Converting R_{e1} and X_{e1} , into per unit,

$$R_{c1} \text{ in pu} = \frac{Actual value}{base value} = \frac{0.0297}{0.2304}$$
$$= 0.129$$
$$X_{c1} \text{ in pu} = \frac{0.018}{0.2304} = 0.078$$
$$\text{i.e. } Z_{c1} \text{ in pu} = 0.129 + \text{j}0.078$$

1. Ans: Cable

Modeling

Length of cable $C_2 = 300m$

 C_2

Resistance of one conductor per km is given as 0.181Ω and reactance / km is given as 0.124Ω . Since, three conductors are in parallel, equivalent resistance and reactance for 300m cable is given by,

$$R_{c2} = \frac{0.181}{3} \times \frac{300}{1000} = 0.0181\Omega$$
$$X_{c2} = \frac{0.124}{3} \times \frac{300}{1000} = 0.0124\Omega$$
Converting into pu

$$R_{c2} \text{ in pu} = \frac{0.0181}{0.2304} = 0.0786 \text{ pu}$$
$$X_{c2} \text{ in pu} = \frac{0.0124}{0.2304} = 0.0538 \text{ pu}$$
i.e. Z_{c2} in pu = 0.0786 + j0.0538

Motors

Note that 1hp = 746watts; if we assume a motor power factor of 0.746, then equivalent motor kVA will be unity. Hence, we will assume that 1hp is equivalent to 1kVA. Subtransient reactance = 25%

$$X_R$$
 Ratio = 6

Per unit reactance of motor 1

$$X_{m1} = \frac{base \, kVA}{motor \, kVA} \times \frac{\% X_{m1}}{100}$$
$$= \frac{1000}{400} \times \frac{25}{100} = 0.625 \text{ pu}$$
$$R_{m1} = \frac{0.625}{6} = 0.1042 \text{ pu}$$

For motor 2

$$X_{m2} = \frac{1000}{600} \times \frac{25}{100} = 0.416 \text{ pu}$$
$$R_{m2} = \frac{0.416}{6} = 0.069 \text{ pu}$$

 $Z_{s} = 0.00011 + j0.00165$ $Z_{T} = 0.0121 + j0.0562$ A $Z_{c1} = 0.129$ F_{1} $Z_{c2} = 0.0786$ + j0.078 F_{1} $Z_{m1} = 0.104$ $Z_{m2} = 0.069$ + j0.416Fig 13.2 Equivalent Circuit for Fig 13.1

 Z_{m2} in pu = 0.069 + j0.416

The equivalent circuit of the system used to calculate the Thevenin's equivalent at node A is shown in fig 13.2. The dotted lines indicate the ground potential.

1. Ans: Fault at F_1

$$Z_{th} = \frac{1}{20.3 - 77.1^{\circ}} = 0.049 \frac{77.1^{\circ}}{20.3 - 77.1^{\circ}} pu$$

Therefore, three phase fault current at fault $F_1 = \frac{ba se current}{r}$

$$Z_{\text{st}} = \frac{1202.8}{0.049} = 24547A$$

1. Ans: Fault at F2

For fault at F₂, the network shown in fig 13.2. can be reduced as shown in fig 13.4. Calculation of Z $Z = Z_{c1} + \frac{1}{\frac{1}{Z_s + Z_T} + \frac{1}{Z_{c2} + Z_{m2}}}$ $= 0.129 + j0.078 + \frac{1}{\frac{1}{0.01221 + j0.05785} + \frac{1}{0.1476 + j0.4698}}$ $= 0.129 + j0.078 + \frac{1}{3.5 - j16.6 + 0.61 - j1.9}$ $= 0.129 + j0.078 + \frac{1}{4.11 - i18.5} = 0.129 + j0.078 + 0.054[77.5]$

$$= 0.129 + j0.078 + 0.012 + j0.053 = 0.141 + j0.131pu$$
$$\frac{1}{Z_{th}} = \frac{1}{Z} + \frac{1}{Z_{m1}} = \frac{1}{0.141 + j0.131} + \frac{1}{0.104 + j0.625}$$

1. Ans:

$$= \frac{1}{0.192|42.7^{\circ}} + \frac{1}{0.633|80.5} = 3.83 - j3.53 + 0.26 - j1.56$$

= 4.09 - j5.09 = 6.53|-51.2°
i.e., $Z_{tk} = \frac{1}{6.53|-51.2^{\circ}} = 0.153|51.2^{\circ}$

Therefore, the total three phase fault current at $F_{2=} \frac{ba \text{ se ampere}}{per unit Z_{r}}$

$$=\frac{1202.8}{0.126}=7861.44A$$

Fig 13.5 shows the single line diagram of a 3 bus system. The sequence data for transmission lines and

2. generators

are given in table 1. If a bolted single line to ground fault occurs at F, calculate the fault current. If the fault impedance is j0.1 pu; what will be the fault current?

Ans: Let us take E as 1 pu. For a SLG fault, Fault current

3E

$$=\frac{Z_{1}}{Z_{0}+Z_{1}+Z_{2}+3Z_{f}}$$

where Z_0 = Zero sequence impedance Z_1 = Positive sequence impedance

 Z_2 = Negative sequence impedance We have to find out the Thevenin's equivalent zero, positive and negative sequence impedances with respect to fault F.

Description	Sequence Data in pu		
	Zero	Positive	Negative
Generator - A	j0.03	j0.25	j0.15
Generator - B	j0.02	j0.20	j0.12
Transmission Line 1	j0.14	j0.08	j0.08
Transmission Line 2	j0.17	j0.13	j0.13
Transmission Line 3	j0.10	j0.06	j0.06
Transmission Line 4	j0.12	j0.06	j0.06

2. Ans: Zero Sequence Impedance

For calculating Z₀, the circuit shown in fig 13.5 is reduced as shown in fig 13.6. $Z_0 = j0.021 + j0.031 = j0.052 pu$

2. Ans: Positive Sequence Impedance

Similarly, positive sequence impedance Z_1 can be found out by reducing the circuit as shown in fig 13.7. i.e. Z_1 , positive sequence impedance = j0.01 + j0.124 = j0.134 pu

2. Ans: Negative Sequence Impedance

Negative sequence impedance Z_2

For negative sequence impedance the circuit can be as shown in fig 13.8.

i.e. negative sequence impedance $Z_2 = j0.01 + j0.08$ = i0.09 pt

Now, fault current
$$I_f = \frac{3E}{Z_1 + Z_2 + Z_0} = \frac{3 \times 1 |0|}{j 0.134 + j 0.09 + j 0.052}$$

 $= \frac{3 \times 1 |0|}{j 0.276} = \frac{3 \times 1 |0|}{j 0.276 |90|} = 10.869 |-90^{\circ}$
If fault impedance $Z_f = j 0.1$, then $I_f = \frac{3E}{Z_1 + Z_2 + Z_0 + 3Z_f} = \frac{3 \times 1 |0|}{j 0.276 + j 0.1 \times 3} = 5.208 |-90^{\circ}$

Review Questions

1. Calculate the symmetrical fault currents at locations F_1 and F_2 of fig 13.9.

- 2. For the system shown in example no. 2, find out the fault current for
- a) SLG fault with j0.1fault impedance.
- b) L-L fault and L-L-G fault between b c phases.
- c) L-L fault and L-L-G fault with j0.1fault impedance. Single line diagram of this question is shown in fig 13.5.
- 3. Single line diagram of a system is shown in fig 13.10. The base value is taken as 30MVA, 34.5kV. The positive and

negative sequence impedances of load are $1.0|25.84^{\circ}pu$, $0.60|29^{\circ}pu$ respectively. Load voltage is kept at 1.0 pu. Calculate the fault current for fault at F. Assume that zero sequence reactance of generator is zero.

Recap

In this lecture we have learnt the following:

- To calculate per unit values of different elements in a system.
- Reduction of the given complex circuit for different fault locations.
- Three phase symmetrical fault current calculation.

• Fault current calculation of the given system.