# NMOS I-V Characteristics

(See Sections 5.1-5.2, p. 238 of Sedra/Smith)

### **OBJECTIVES:**

To study NMOS transistor I-V curves by:

- Simulating a transistor to investigate the drain current vs. gate-to-source voltage and drain-to-source voltage.
- Implementing a circuit and taking measurements of the  $I_D$  vs.  $V_{GS}$  and  $I_D$  vs.  $V_{DS}$  curves.
- Extracting values of  $k_n$ ,  $V_{tn}$ , and  $\lambda_n$ .

### **MATERIALS:**

- · Laboratory setup, including breadboard
- 1 enhancement-type NMOS transistor (e.g., MC14007)
- Several wires

### **PART 1: SIMULATION**

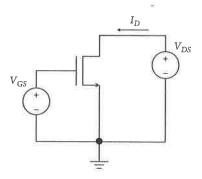



FIGURE L5.1: Transistor measurement circuit.

Consider the circuit in Figure L5.1. Enter the circuit into your simulator's schematic editor, applying DC voltage supplies to the gate and drain of the transistor.

ID vs. VGS

While setting  $V_{DS}$  to a constant value of 5 V, sweep the gate voltage from 0 V to 5 V in increments of 0.1 V. Plot a curve of  $I_D$  vs.  $V_{GS}$ . At what value of  $V_{GS}$  does the current turn on?

In vs. VDS

For three values of  $V_{GS}$  (2.5 V, 3.0 V, and 3.5 V), sweep the drain voltage from 0 V to 5 V in increments of 0.1 V. Plot the curves for  $I_D$  vs.  $V_{DS}$  onto a single graph, clearly indicating the value of  $V_{GS}$  next to each curve.

### **PART 2: MEASUREMENTS**

Assemble the circuit from Figure L5.1, using a power supply to generate the DC voltages.

In vs. VGS

While setting  $V_{DS}$  to a constant value of 5 V, sweep the gate voltage from 1.0 V to 3.5 V in increments of 0.25 V (note, we have reduced the number of data points with respect to the simulations), and measure the drain current using the power supply. (*Note*: Not all power supplies allow you to measure current accurately; if this is the case for your lab setup, you may place a small resistor in series with the drain and measure the voltage drop across the resistor.) Plot a curve of  $I_D$  vs.  $V_{GS}$ . At what value of  $V_{GS}$  does the NMOS turn on?

Ip vs. Vps

For three values of  $V_{GS}$  (2.5 V, 3.0 V, and 3.5 V), sweep the drain voltage from 0 V to 3.5 V in increments of 0.5 V, and measure the drain current using the power supply. Plot the curves for  $I_D$  vs.  $V_{DS}$  onto a single graph, clearly indicating the value of  $V_{GS}$  next to each curve.

## PART 3: POST-MEASUREMENT EXERCISE

#### Simulation vs. measurement

What are the main differences between your simulated and measured curves? Can you explain the differences?

### Parameter extraction

(1) Threshold voltage,  $V_{tn}$ 

From the measured  $I_D$  vs.  $V_{GS}$  curve, at what value of  $V_{GS}$  does the NMOS turn on? Set this as the threshold voltage  $V_{tn}$ , of your transistor.

(2) MOSFET transconductance parameter, k<sub>n</sub>

Based on the value of drain current  $I_D$  at  $V_{GS} = 3.0$  V, and using the saturation model for the transistor, i.e.,  $I_D = (1/2)k_n(V_{GS} - V_{tn})^2$ , extract the value of  $k_n = \mu_n C_{\rm ox}(W/L)$ . Using your extracted values of  $V_{tn}$  and  $k_n$ , plot a curve of  $I_D$  vs.  $V_{GS}$ ,

using the saturation model, and compare with your simulated and measured curves. Are there any differences? Can you explain the differences?

#### (3) Early voltage, $V_A$

Based on your measured  $I_D$  vs.  $V_{DS}$  curves for a saturated transistor, extract the Early voltage  $V_A$ . Does  $V_A$  change significantly for each value of  $V_{GS}$ ? What is the average value of  $V_A$ ? Based on your average value of  $V_A$ , calculate  $\lambda_n = 1/V_A$ .

Repeat Steps 1 to 3 for your measured results. Summarize your results in the following table.

|                       | MEASURED |
|-----------------------|----------|
| $V_{tn}[V]$           |          |
| $k_n [\text{mA/V}^2]$ |          |
| $\lambda_n [V^{-1}]$  |          |

### PART 4 [OPTIONAL]: EXTRA EXPLORATION

If you have access to a semiconductor parameter analyzer, generate the  $I_D$  vs.  $V_{DS}$  curves using the analyzer. How do they compare to the curves you generated in Part 3? Re-extract values of  $V_{In}$ ,  $k_n$ , and  $\lambda_n$ .