NMOS Common-Source Amplifier

(See Section 5.8.2, p. 316 of Sedra/Smith)

OBJECTIVES:

To study an NMOS-based common-source (CS) amplifier by:

- Completing the DC and small-signal analysis based on its theoretical behavior.
- Simulating it to compare the results with the paper analysis.
- Implementing it in an experimental setting, taking measurements, and comparing its performance with theoretical and simulated results.
- Measuring its output resistance.
- Qualitatively seeing the impact of transistor-to-transistor variations.

MATERIALS:

- · Laboratory setup, including breadboard
- 1 enhancement-type NMOS transistor (e.g., MC14007)
- 3 large (e.g., 47-μF) capacitors
- Several resistors of varying sizes
- Wires

PART 1: DESIGN AND SIMULATION

Consider the circuit shown in Figure L5.5:

FIGURE L5.5: Common-source amplifier circuit, with coupling capacitors, and resistor R_G for DC-biasing purposes. Based on Fig. 5.57 p. 317 S&S.

Design the amplifier to achieve a small-signal gain of at least $A_{\nu} = -5$ V/V. Use supplies of $V_{+} = -V_{-} = 15$ V, $R_{\rm sig} = 50$ Ω , $R_{L} = 10$ k Ω , $R_{G} = 10$ k Ω , and design the circuit to have $I_{D} = 1$ mA. Obtain the datasheet for the NMOS transistor that will be used. In your lab book, perform the following:

DC Operating Point Analysis

- Sketch a DC model of the circuit in your lab book, replacing the three "large-valued" coupling capacitors C_{C1} , C_{C2} , C_S by open circuits (for simplicity you may also omit v_{sig} , R_{sig} , and R_L). What is the DC current through R_G ?
- Based on the information just given, you have enough information to calculate $V_{OV} = V_{GS} V_{tn}$. What is its value? What is the value of g_m ? What is V_{GS} ? Remember: Your actual transistor will have a value of V_{tn} that will vary from its nominal value, which will alter your measurement results slightly!
- Calculate r_o .
- You now have enough information to calculate R_S . Show your calculations. Is the value you calculate for R_S available in your kit? Can you achieve this value by combining several resistors? Comment.
- Note: At this stage we know neither V_{DS} nor R_D .

AC Analysis

- Sketch a small-signal model of the circuit in your lab book, replacing the transistor with its small-signal model, replacing the capacitors with short circuits (what happens to R_S ?), and replacing V_+ with an AC ground. What happens to V_- ? Label the gate of the transistor as v_i , i.e., the small-signal voltage at the input.
- What is the ratio of v_i/v_{sig} ? How would you approximate it in further calculations?
- Derive an expression for $A_v = v_o/v_i$. What is the value of R_D that produces a small-signal voltage gain of at least $A_v = -5$ V/V? Is the value you calculated for R_D available in your kit? Can you achieve this value by combining several resistors? Comment.
- What is the DC voltage at the drain? Does this satisfy the assumption that the transistor should be operating in the saturation region? Explain.
- What is the output resistance, R_0 ?

Simulation

- Simulate your circuit. Use capacitor values $C_{C1} = C_{C2} = C_S = 47 \,\mu\text{F}$, and the values of R_S and R_D based on your preceding calculations. Use a 10-mV_{pk-pk}, 1-kHz sinusoid with no DC component applied at v_{sig} .
- From your simulation, report the DC values of V_{GS} , V_{DS} , and I_D . How closely do they match your calculations? (Remember: The simulator has its own morecomplex model of the real transistor, so there should be some small variations.)
- From your simulation, report A_{ν} . How closely does it match your calculations?

PART 2: PROTOTYPING

Assemble the circuit onto your breadboard using the specified component values and those just calculated. Note that R_{sig} represents the output

resistance of the function generator, and therefore you should *not* include it in your circuit.

PART 3: MEASUREMENTS

- DC bias point measurement: Using a digital multimeter, measure the DC voltages of your circuit at the gate (V_G) , source (V_S) , and drain (V_D) of your transistor.
- AC measurement: Using a function generator, apply to your circuit a 10-mV_{pk-pk} , 1-kHz sinusoid with no DC component. (Note: Some function generators allow only inputs as small as 50 mV_{pk-pk} . If this is the case, use that value instead.)
- Using an oscilloscope, generate plots of v_o and v_i vs. t.
- Output resistance R_o : Replace R_L with a 1-M Ω resistor and repeat the AC measurement. What is the amplitude of the output waveform? Adjust R_L until you find a value such that the amplitude of the output waveform is approximately 50% of what it was for the 1-M Ω load. This new value of R_L is the output resistance R_o . How does it compare to the value you calculated earlier in Step 2? Hint: It cannot be greater than the value of R_D .
- Further exploration: What happens to the shape of the output signal as you increase the amplitude of the input signal, e.g., to $1 V_{pk-pk}$? At what input amplitude do you begin to see significant distortion? Can you explain this?
- Using a digital multimeter, measure all resistors to three significant digits.

PART 4: POST-MEASUREMENT EXERCISE

- Calculate the values of V_{GS} and V_{DS} that you obtained in the lab. How do they compare to your pre-lab calculations? Explain any discrepancies.
- Based on the measured values of V_D and V_S and your measured resistor values, what is the real value of I_D based on your lab measurements?
- What is the measured value of A_{ν} ? How does it compare to your pre-lab calculations? Explain any discrepancies.
- Hint: The single biggest source of variations from your pre-lab simulation results will be due to variations in the transistor threshold voltage V_{in} . Remember: Its value will be somewhere within the range indicated on the transistor datasheet.

PART 5 [OPTIONAL]: EXTRA EXPLORATION

• Instead of tying R_G to ground, try tying it to the drain terminal of the transistor. Repeat the DC bias point measurement and the small-signal gain measurement. What has changed? Do R_D and R_S need to be altered to meet design specifications?