Digital Circuit Design Jeffrey N. Denenberg Lecture \#1

Introduction, Logic Circuits

Administrative

Handouts

Course Syllabus (readings due before lecture)
inttp://DoctorD.WebHop.net
Linked Resources on Syllabus
Grading
20\% Homework (Due the week following the lecture on that topic)
2 midterms (40\%) + cumulative final (40\%)
all exams required; make arrangements in advance
if you have a conflict.
Lab Note: You should prepare prior to Lab session Paper design (if required)
Functioning simulation

Number Systems

Radix 10 Why? (0, 1, 9)
$5,273=5^{*} 10^{3}+2^{*} 10^{2}+7^{*} 10^{1}+3^{*} 10^{0}$
Binary Radix $2(0,1)$ On/off
$153=2^{7}+2^{3}+2^{0}=10001001$
Octal Radix 8 (0, 1, 7)
$153=2^{*} 8^{2}+3^{*} 8^{1}+8^{0}=231$
Hexadecimal Radix 16 (0, 1, 9, A, F)
$153=9^{*} 16^{1}+9^{*} 16^{0}=99$

Complements

(Representing Negative Numbers)
Signed-magnitude Binary

$-9=\underline{10001001}$

1 s complement (complement all bits)
$-9=11110110$
2 s complement (add 1 to the 1 s complement) $-9=11110111$

Illustrative Example: 9 s Complement

Decimal Subtraction

575
-57
518
9 s Complement
$-057=942$
575
1517
now wrap the overflow around and add for the answer 518
10 s Complement
$-057=942+1=\quad 943$
575
1518
Here ignore the overflow to get 518

Other Codes

BCD (10, 4-bit binary
codes per digit)

$\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F\end{array}$ 0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI 1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2	SP	!	"	\#	\$	\%	\&		()		+		-		/
3	0	1	2	3	4	5	6	7	8	9			<	=	>	?
4	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z		1]	\wedge	
6		a	b	c	d	e	f	g	h	I	j	k	1	m	n	0
7	p	q	r	s	t	u	v	w	X	y	z	\{			~	DEL

Digital Logic

Binary system -- 0 \& 1, LOW \& HIGH, negated and asserted.
Basic building blocks -- AND, OR, NOT
(a)

(b)

(c)

Digital Logic Continued

(a)

(b) $\frac{X}{Y}$

Many representations of digital logic

Transistor-level circuit diagrams

Gate symbols (for simple elements)

Prepackaged building blocks, e.g. multiplexer

Equations: $Z=S^{\prime} \cdot A+S \cdot B$

CMOS Inverter

(b)

V_{IN}	$Q I$	$Q 2$	$V_{\text {OUT }}$
$0.0(\mathrm{~L})$	off	on	$5.0(\mathrm{H})$
$5.0(\mathrm{H})$	on	off	$0.0(\mathrm{~L})$

(c)

Switch model

Simplified Inverter Model

Alternate transistor symbols

Inverter Again

CMOS Gate Characteristics

No DC current flow into MOS gate terminal
However gate has capacitance ==> current required for switching (CV²f power)
No current in output structure, except during switching Both transistors partially on Power consumption related to frequency
Slow input-signal rise times ==> more power
Symmetric output structure ==> equally strong drive in LOW and HIGH states

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

