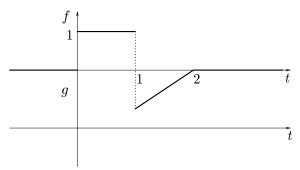
## **EE 102**

## Homework #1

Fall 2001


## Professor Paganini

## Due Wednesday 10/3/01

- 1. Review of integration.
  - (a) Evaluate the integrals  $\int_0^{\pi} t \cos(t) dt$  and  $\int_0^{\pi} t^2 \sin(t) dt$ .
  - (b) For a differentiable function f, derive the identity

$$\int_0^t f(t-\tau)d\tau = tf(t) - \int_0^t \tau f'(\tau)d\tau$$

(c) The figure below contains a picture of a function f(t). Find the function  $g(t) = \int_{-\infty}^{t} f(\tau) d\tau$  and sketch it under f(t).



- 2. Review of complex numbers
  - (a) Find the following complex numbers (real and imaginary parts):

(1) 
$$e^{-\frac{27}{2}\pi i}$$
, (2)  $(i)^{i^6}$ 

(b) Change these complex numbers into exponential form:

(1) 
$$\alpha = \sqrt{3} - i$$
, (2)  $\beta = -i$ .

- (c) For the numbers in part (b), compute  $\alpha^3/\bar{\beta}$ , where  $\bar{\beta}$  is the complex conjugate of  $\beta$ .
- (d) Find the complex roots to the polynomial equation  $z^6 27 = 0$ .

3. Given the differential equation for  $t \ge 0$ 

$$\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - 2x(t)$$

- Let x(0) = 0 and y(0) = 0; solve for y(t) in terms of x(t).
- 4. For each of the following systems with input x(t) and output y(t), find out whether they are (i) linear, (ii) time invariant, (iii) causal. Justify your answer.
  - (a) y(t) = x(t+1) 3.
  - (b)  $y(t) = e^t x(t)$ .
  - (c)  $y(t) = \int_t^\infty x(\tau) d\tau$ .
  - (d) The system where y(t) is equal to x(t) when x(t) > 0, and zero otherwise.