

1. In the above RC circuit, the switch is closed at time $t=0$, with the capacitor initially discharged. After that, the sinusoidal voltage $x(t)=\sin \left(\omega_{0} t\right)$ is applied, where $\omega_{0}=\frac{1}{R C}$. Find the output voltage $y(t)$.
2. We are given an LTI system with proper transfer function $H(s)$. The second order denominator has roots (poles) at $s=-1 \pm i$. To determine the numerator, we are given the following information:

- When the input is $x(t) \equiv 1$ for $t \in(-\infty, \infty)$, the output $y(t) \equiv 2$.
- When the input is $x(t)=\cos (2 t)$ for $t \in(-\infty, \infty)$, the output is zero.
a) Find $H(s)$.
b) Now let the input be $x(t)=\sin (2 t) u(t)$. Find the output.

3. For the following functions, find out whether they are periodic, and if so, give the period.
a) $\cos (4 t)+\sin (3 t-3)$;
b) $e^{\sin (t)}$;
c) $\sin \left(e^{t}\right)$.
4. In the periodic function $f(t)$ below, the portion indicated by the arrow is a cosine function. Find the Fourier series expansion $f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{i n \omega_{0} t}$.

