Homework #8

Fall 2001

Professor Paganini

Due 12 PM Friday 12/7/01. 66-147F Eng IV.

1.

EE 102

In the above figure:

- The input is $x(t) = 1 + \cos(\omega_0 t)$.
- The system SQ takes the square of the input, $y(t) = [x(t)]^2$.
- BP is an ideal band-pass filter, with frequency response function

$$H(i\omega) = u\left(\omega + \frac{3}{2}\omega_0\right) - u\left(\omega + \frac{1}{2}\omega_0\right) + u\left(\omega - \frac{1}{2}\omega_0\right) - u\left(\omega - \frac{3}{2}\omega_0\right)$$

• The last stage is defined by $z(t) = v(t)\cos(\omega_0 t)$.

Find the time domain functions y(t), v(t) and z(t), and sketch the Fourier transforms $Y(i\omega)$, $V(i\omega)$, and $Z(i\omega)$.

- 2. (a) Find the Fourier transform of $f(t) = \frac{1}{1-it}$. *Hint:* consider duality.
 - (b) Find the Fourier transform of

$$\frac{\sin(t)}{\pi t \ (1-it)}$$

Hint: use the previous answer and the convolution properties of the transform.

- 3. We are given a linear time invariant system S with impulse response h(t) = u(t) u(t T), where T is a fixed constant.
 - a) Find the frequency response function $H(i\omega)$, and show it can be expressed in the form

$$H(i\omega) = e^{-i\omega \frac{T}{2}} H_R(i\omega)$$

where $H_R(i\omega)$ is a **real** function of ω that you should determine. Sketch $H_R(i\omega)$.

- b) If we apply to S a periodic input with period exactly equal to T: what is the output?
- c) Now suppose we connect \mathcal{S} in the following configuration:

Taking f(t) to be the input sketched below, and T = 1, sketch y(t) in the same plot. Also write a formula for $Y(i\omega)$ in terms of $F(i\omega)$.

