EG 32

Digital Electronics

Thought for the day

You learn from your mistakes.....

So make as many as you can and you will eventually know everything

Digital Electronics

Analog signal: Signal is constantly changing levels

Digital signal: Signal is either present (1) or not (0)

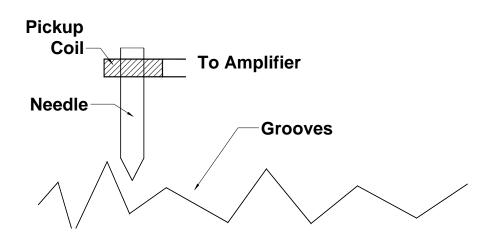
Computers

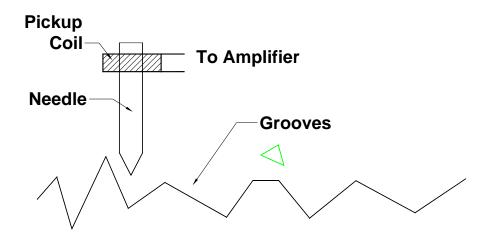
Communications

Music

Why Digital?

Phonograph Record (1/2 mile of grooves)





Why Digital?

Noise:	Clarity of signal
Storage:	Real time storage

- **Programmable:** Processing is easier
- **Precision:** Not dependent on component values

Circuit Density: Much higher than analog

Basic Binary Arithmetic

Decimal system	-	Base 10
Binary system	-	Base 2
Octal system	-	Base 8
Hexadecimal System	-	Base 16

Decimal system:

 $2745.214 = 2x10^{3} + 7x10^{2} + 4x10^{1} + 5x10^{0} + 2x10^{-1} + 1x10^{-2} + 4x10^{-3}$

Binary system:

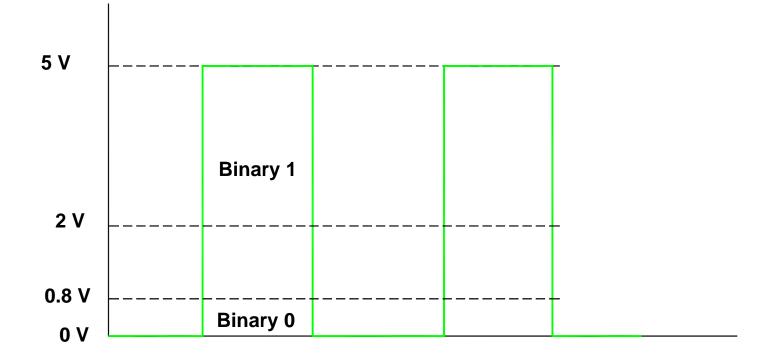
1011.101	$= 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0} + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
	= 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125
	= 11.625 ₁₀

Each of the binary numbers is called a "bit"

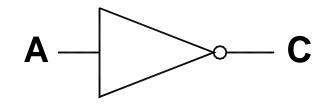
Adding binary numbers

 $1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 10$ <u>0111</u> $0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 7$

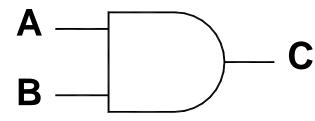
Representation of Binary Signals



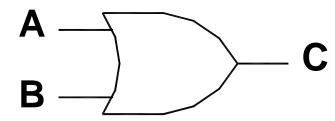
All Logic Circuits can be realized with just three basic building blocks



Inverter



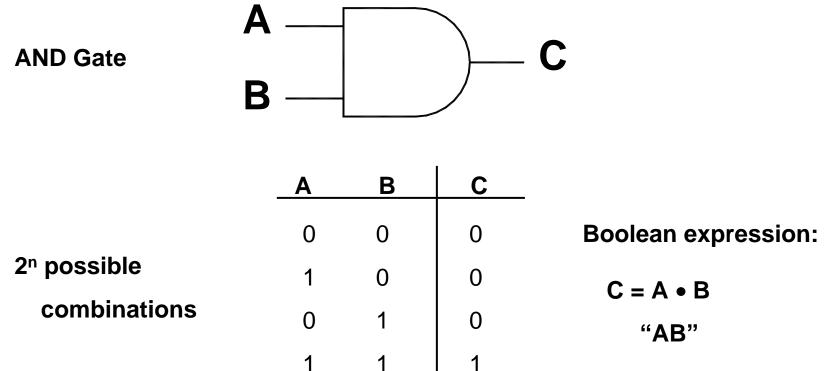
And Gate



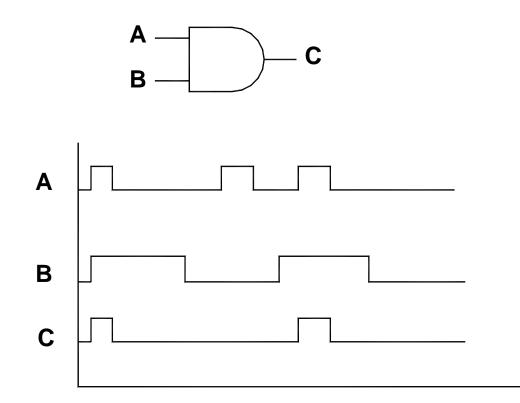
Or Gate

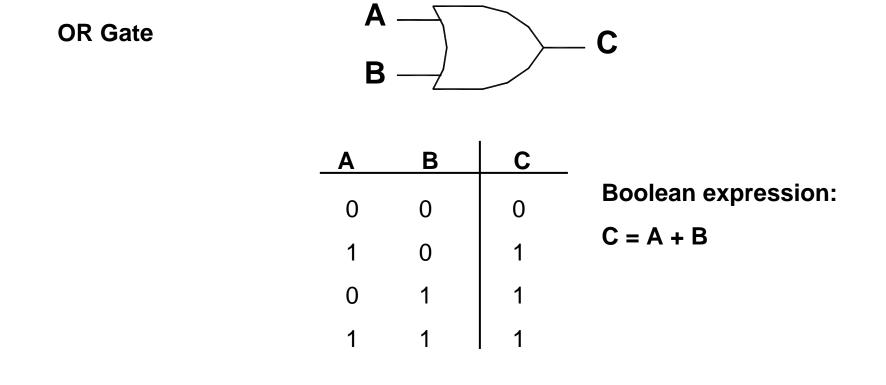
Truth Table

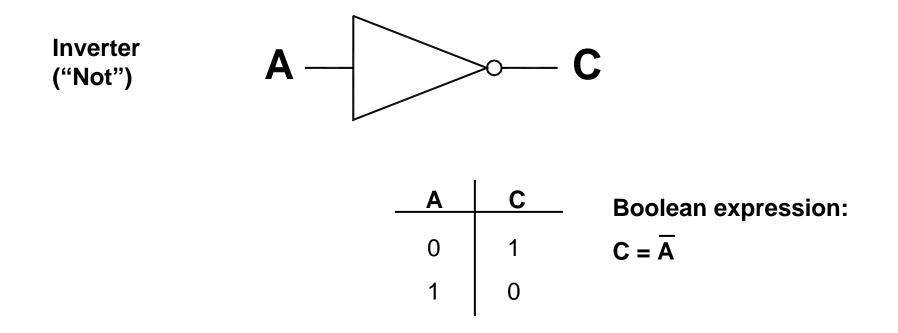
A table that lists all possible outputs for all possible inputs

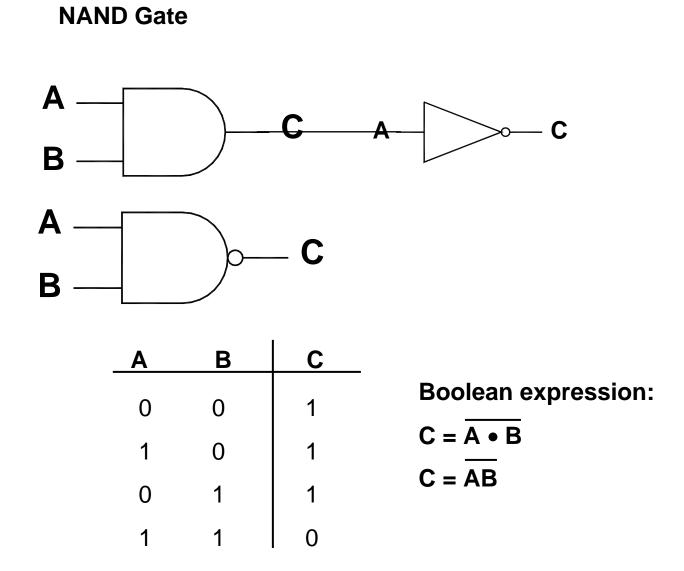


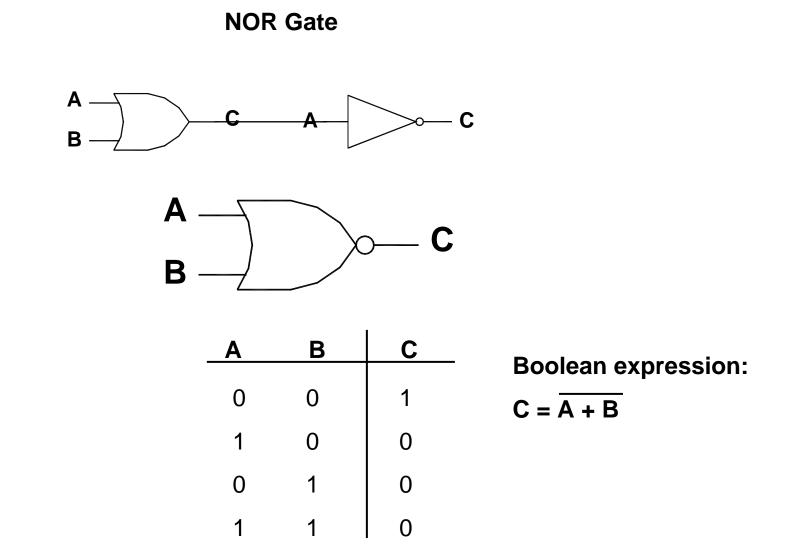
Operation of AND Gate

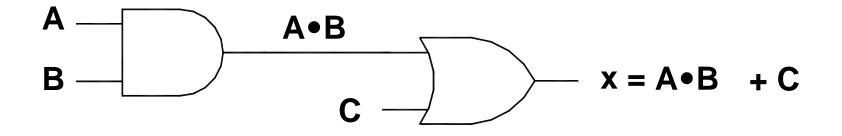












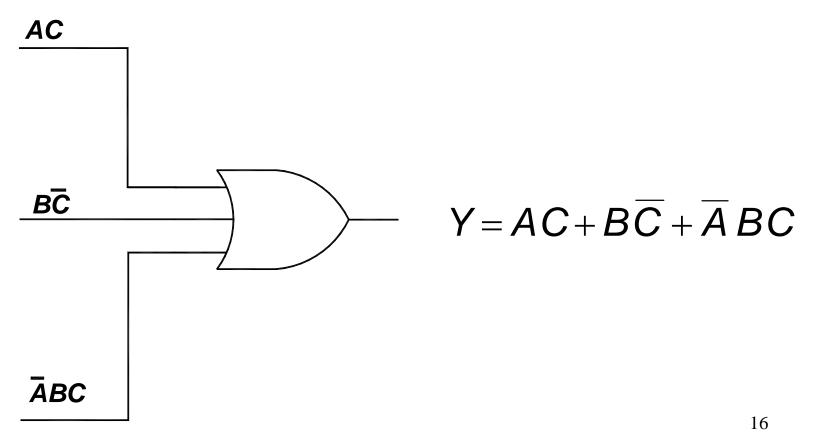
Α	В	A•B	С	$X = A \bullet B + C$
0	0	0	0	0
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1
0	0	0	1	1
0	1	0	1	1
1	0	0	1	1
1	1	1	1	1

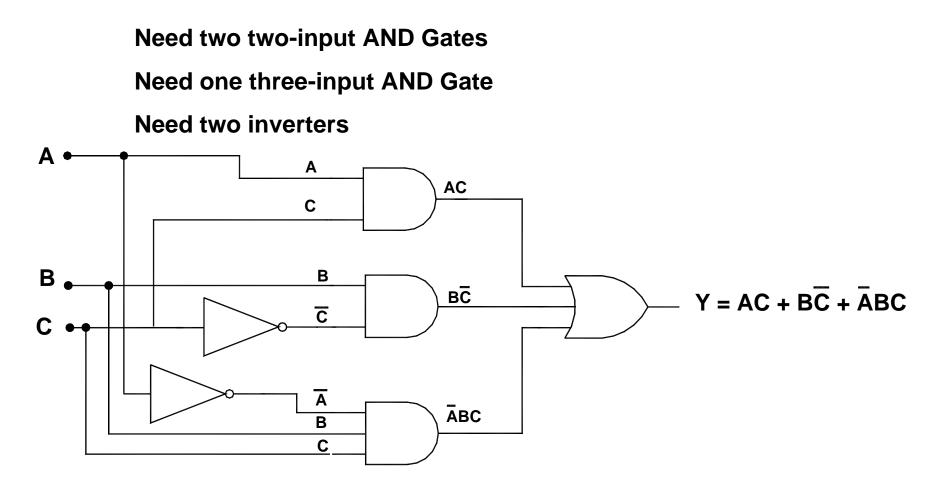
To go the other way:

Suppose we want to implement:

 $Y = AC + B\overline{C} + \overline{A}BC$

Need a three-input OR Gate

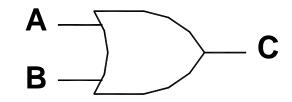


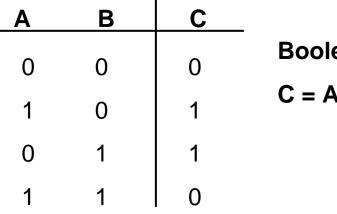


А	В	С	AC	вC	АВС	Y
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	1	0	0	1
1	1	0	0	1	0	1
1	1	1	1	0	0	1

Exclusive OR (XOR) Gate

XOR Gate





Boolean expression:

$$\mathsf{C} = \mathsf{A} + \mathsf{B}$$

The XOR gate can be used to make a circuit that adds two one - bit binary numbers

- 0 + 0 = 0 no carry
- 1 + 0 = 1 no carry
- 1 + 1 = 0 1 carry

Adding binary numbers

- $1 0 1 0 1 x 2^{3} + 0 x 2^{2} + 1 x 2^{1} + 0 x 2^{0} = 10$
- $0 1 1 1 \qquad 0 x 2^{3} + 1 x 2^{2} + 1 x 2^{1} + 1 x 2^{0} = 7$
- 10001

Boolean Algebra Theorems

Single variable **Multiple variables** $\mathbf{X} \bullet \mathbf{0} = \mathbf{0}$ X + Y = Y + X**x** ● 1 = **x** $\mathbf{x} \bullet \mathbf{y} = \mathbf{y} \bullet \mathbf{x}$ x + (y + z) = (x + y) + z = x + y + z $X \bullet X = X$ $\mathbf{x} \bullet \mathbf{x} = \mathbf{0}$ x (yz) = (xy)z = xyz $\mathbf{x} + \mathbf{0} = \mathbf{x}$ x(y + z) = xy + xz(w + x)(y + z) = wy + xy + wz + xzx + 1 = 1 X + X = Xx + xy = x $x + \overline{x} = 1$ $x + \overline{xy} = x + y$

Example:

Simplify

 $Y = A\overline{B}D + A\overline{B}\overline{D}$

Factor out $A\overline{B}$

 $Y = A\overline{B}(D + \overline{D})$

 $D + \overline{D} = 1$

 $Y = A \overline{B} D + A \overline{B} \overline{D} = A \overline{B}$

DeMorgan's Theorems

$$\overline{(x + y)} = \overline{x} \bullet \overline{y}$$
$$\overline{(x \bullet y)} = \overline{x} + \overline{y}$$

Example: Simplify

$$z = (\overline{A} + C) + (\overline{B} + \overline{D})$$
$$z = (\overline{\overline{A}} \cdot \overline{C}) + (\overline{B} \cdot \overline{D})$$
$$\overline{\overline{A}} = \overline{A}, \quad \overline{\overline{D}} = D$$
$$z = A\overline{C} + \overline{B}D$$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.