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Topics

= Review
= Linearization through Taylor’s Series approximation

= Today

= Physical systems:
= Spring-mass-damper system
= RLC circuits
= DC motor

= Laplace transform
» Transfer functions
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» Identify an operating point

= Perform Taylor series expansion and keep only
constant and 1%t derivative terms
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Physical Laws of Process

= For mechanical systems: Newton'’s laws

= Newton's second law of motion: the relationship between an
object's mass m, its acceleration a, and the applied force F

F=ma

= For electrical systems: Kirchhoff’s laws
= 1st law or the junction rule (KCL): For a given junction or
node in a circuit, the sum of the currents entering equals the
sum of the currents leaving.
= 2nd law or the /oop rule (KVL): Around any closed loop in a
circuit, the sum of the potential differences across all
elements is zero.
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Spring-Mass-Damper System™

= F(t): equivalent force on

mass m
K C
= The signs of -kx and -cx are
negative because these forces
oppose the motion of f(t) m
f(t) External
Vo g
- - Vertical
mi = F(t) = —kx — ¢ + f(t) Displacement
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Two-Mass System™

K1
K AAAA
m m,
T 1
f N
C1
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T~

Displacement

mx = f(t)- Kx+K,(x,—x)+C(x,-X)
{mljél =—K,(x;,—x) - Cy(x, - x)

Assume the motion directions: x>0; x;-x>0
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Series RLC Circuit™
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v(t) @ _|_l c Ve

Applying Kirchhoff's voltage law yields an integro-
differential model:

v(t) = wgr(t)+vLt) +ve(t)
. t
= Ri(t)+ Ldz[—(tt) + é/o i(r) dr
Input: v(t); Output: i(t)
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Parallel RLC Circuit

r (1) +
Current T) R L C A~ vl

source

Applying Kirchhoff’s current law:

dv(t) 1

+

c— Ew0+%{wn=ﬂn

Input: r(t); Output: v(t)
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The Laplace Transform

= The method of Laplace transforms converts a
calculus problem (the linear differential
equation) into an algebra problem.

= The solution of the algebra problem is then
fed backwards through a the Inverse Laplace
Transform and the solution to the differential
equation is obtained.

N

CALCULUS | LAPLACE |

/

N

ALGEBRA
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The Laplace Transform

= Pierre-Simon Laplace
(1749-1827)

= Laplace proved the stability of
the solar system. He also put
the theory of mathematical
probability on a sound footing

= "All the effects of Nature are
only the mathematical
consequences of a small
number of immutable laws.”

~ LAPLACE |« Studied, but did not fully
£ developed the Laplace
transform
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The Laplace Transform

= Like the Fourier transform, the Laplace
transform is an integral transform

N = [ " (et

= Alternately the Laplace variable s can be
considered to be the differential operator:

d(.)
dt
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Laplace Transform Properties

= Linearity:
Lkf(t)] = kF(s)
Lfi(t) + f2(t)] = Fi(s) + Fa(s)
= Differentiation:
LIf(t)] = sF(s)— f(07)
LIf(t)] = s*F(s)—sf(07)— f(07)
LIFM@)] = s"F(s)—s"1f(07)—---— f=D(07)

= Final value theorem: lim f(¢) = lim sF(s)
« Initial value theorem:  “"*¥(0+) = Tim sF(s)
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Important Laplace Tr. Pairs
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F(s)  f(t)
Impulse function 1 4(t)
Step function % 1(t)
Exponential decay pares e
Sine and cosine TroT sin(wt)

el cos(wt)

See Dorf and Bishop, Table 2.3, p. 47 and
Table D.1 (App. D) online.
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Important Laplace Tr. Pairs

= Damped oscillations

F(s) f(t)

w —at 43
GraTa? e~ % sin(wt)
s+a —at
Gra) o e~ % cos(wt)

@ Wn__e—Cwntgin(wpy/1 — (2t)

$242C¢wn stw? m

See Dorf and Bishop, Table 2.3, p. 47 and
Table D.1 (App. D) online.
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Laplace Transforms

EECE 360

Region of convergence: ft) Fs) RocC
= Where the transform integral 1 H s3>0
converges heZo0
« The Laplace transform ¢ "
exists only when the I(at1)
integral converges! t i 5>0
at
If |f(t)| <M€ et ,,1_" s>a
for all positive t, then
o cos(at) T s>0
—st
/_ |f(t)|6 dt < oo et sin(bt) | s>a
will converge for s > a. 5t —c)
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Example

= Consider the spring-mass-damper system
d?y(t dy(t
&y Ly

dt? dt

= Assuming the system is initially at rest (all initial
conditions at zero), then

R(S) = Ms?Y (s) + bsY (s) + kY (s)

output
PUE1Y () Transfer
— i
input+— R(s) function
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+ ky(t) = r(t)
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Transfer Function

= Defined as the ratio of the Laplace
transform of the output to that of the
input

= Describes dynamics of a LTI system

R(S) (bmsm + bm—lS”F1 +eeet bO) Y(S)

— > -
(ays"+ ay 15"+t ag)
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Transfer Function

= Time domain

r(t) y(1) =r(1)* g(1)
/[ —_— () |
Laplace
transform
= Frequency domain
R(s) Y(s)=R(5)G(s)
— G(s) —
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Transfer Function

= Differential equation replaced by algebraic
relation Y(s)=G(s)R(s)

= Note that if R(s)=1 then Y{(s5)=G(s) is the
impulse response of the system

= Note that if R(s)=1/s, the unit step function,
then Y(s)=G(s)/s is the step response

= The magnitude and phase shift of the
response to a sinusoid at frequency w is given
by the magnitude and phase of the complex
number G(jw) (see Chapter 8)
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Transfer Function

= Using the Final Value Theorem, the static or
D.C. gain of a transfer function G(s) is given
by G(0):
lim f(t) = lim sG(s)

t—00 s—0

» Let G(s) = N(s)/D(s), then
= Zeros of G(s) are the roots of N(s)=0
= Poles of G(s) are the roots of D(s)=0
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Second Order System Poles

G(s) = 1/M B 1/M
824+ (b/M)s+ (k/M) 52 + 2Cwps + w?
_ Jjo * Damping ratio
=0
~ Jjoy wn, Natural frequency

(<1
gmcreasmg/ o, In the underdamped case
(complex roots due to the
o quadratic):

s,=-Cw,* jo, 1-&°
with € <1

v
Critical damping
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Second Order System Poles

B 1/M B 1/M
)= @M+ (/M) ~ P+ s

* Damping ratio
Wy, Natural frequency

jo
N jo\T= 2
In the underdamped case

|

|

|

| (complex roots due to the
_}w 0 o quadratic):

i s1’2=—Cwnijwn 1-&°
D SjoNT=2 | with £ <1
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Natural Response (no input)

2
n Wn e—(wn

w.

=
$2 4+ 2w, s + w2 N

(1)

tsin(wnyv/1—¢2t),¢ < 1

Yo Overdamped case

\/ \/ o~ » Time

Underdamped case

\<

-

-7
< e~ @ envelope
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Transfer Functions

= A transfer function is

= strictly proper when the degree of the
denominator is greater than that of numerator

« proper if those degrees are equal

« improper if the degree of the numerator is
greater than than of the denominator

= Physical systems are proper or strictly proper
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RLC Network

1
V(s) C Ve(s)
—_—
— s2+ R s+ L
L LC

V(s)
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Voltage divider
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UBC
Example: Spring-mass-damper
= Find transfer function G(s) ék
between the position x,(f)  IIFictionr, &
and the forcing function r(t) [\ toct
= Key assumption: IC are zero Friction by |_|_|
= X, (£)=x,(t)=0 | o, | [H
= dx,/dx=dx,/dt=0 For .1 v(0)
= Note that x,(t) does not
appear explicitly. (Why?) Dorf and Bishop,
Example 2.4, p. 56
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Example: DC Motor

= Power actuator

= Robotic manipulators, disk
drives, machine tools, etc.

+

= Armature-controlled

« Input: voltage applied to
armature V, (=E,) -

= Output: angle of rotation 6
= Control variable: current i,

Vs
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Armature

Ry

Ly

i1
Field
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Example: DC Motor

i,(¢#)= armature current

L, = armature inductance
R, = armature resistance
e,(t) = back emf

T,(t) = load torque ¢ = magnetic flux in the air gap
T, ()= motor torque , ()= rotor angular velocity
6, (t) = rotor displacement J,, = rotor inertia

e,(t)= applied voltage
K, = back-emf constant

K. = torque constant B_ = viscous friction coefficient Stator

winding

Rotor windings
Brush

OLM‘R;
Shaft 1 ™ (p
\ 5
Commutator

Bearings
Inertia
load
Angle
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Example: DC Motor

= Armature circuit:

T,(0)=Kit)
e(t) = K, (1)

= Motor relations:

= Mechanical

Response: J,@, (1) =T,(t) - T,(t) - B, 0,(t)

EECE 360

di
e(t)-e(t)=Rji,+L,—~
() —e,(?) 7
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Example: DC Motor

= Armature circuit:
E(s)-E(s)=(R,+sL,)I(s)

= Motor relations: {Tm (s) = KL(s)

= Mechanical E,(s) = K, L, (s)

Response:

J,592,(8)=T,(5)-T,(s)-B, 2 (s)
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Example: DC Motor

Using Laplace transform, we can represent this DC
motor by the block diagram below

T4(s)

©,,(s)

\ Ky

E(5) RS n.ufé |2
+ er + Lu" Ki + J mS T Bm i
E(s)

Notice inherent feedback in the model

6,,(s)

Transfer function: H(s) = E (s)
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Summary

= Today
= Laplace transform
= Final Value Theorem
= Transfer functions

= Next

= Operational Amplifiers
= Block diagram models

EECE 360

32




