EECE 360 Lecture 9

State Equation Representation of Dynamic Systems (cont'd)

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia

http://courses.ece.ubc.ca/360 eece.360@gmail.com

Chapter 3.3-3.5

EECE 360 v2.4

1

Review: Canonical Forms

Transfer function to state-space

$$\frac{Y(s)}{U(s)} = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ -a_1 \\ 0 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}, \quad B = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix}$$

$$C = \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_{n-1} \end{bmatrix}, \quad D = 0$$

Control canonical form

EECE 360 v2.4

Observer canonical form

 $C = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, D = 0$

State-space equations

- Last week
 - State-space to transfer function
 - Transfer function to state-space
 - Control canonical form
 - Observer canonical form
- Today
 - Solution to state-space: x(t) = ...
 - More examples

The State Transition Matrix

• Consider the homogenous (i.e. zero-input) dynamics:

$$\dot{x} = Ax$$

 The solution to this equation represents the evolution of the system's free response to non-zero initial conditions:

State transition
$$x(t) = \Phi(t)x(0)$$
 matrix

EECE 360 v2.4

EECE 360 v2.4

The State Transition Matrix

 Given an initial value, the state transition matrix predicts the state at any other time

So what is the state transition matrix?

EECE 360 v2.4

5

7

The State Transition Matrix

Consider the homogenous (i.e. zero-input) dynamics:

$$\dot{x} = Ax$$

 A Taylor's series approximation taken about t=0 provides the solution

$$x(t) = e^{At}x(0) = \Phi(t)x(0)$$

• In which the **matrix exponential** is defined as

$$e^{At} = I + At + A^2 \frac{t^k}{2!} + \dots + A^k \frac{t^k}{k!} + \dots = \sum_{k=1}^{\infty} A^k \frac{t^k}{k!}$$

EECE 360 v2.4

6

The Matrix Exponential

Useful matrix exponential properties

$$\begin{array}{rcl}
e^{A \cdot 0} & = & I \\
e^{A(t_1 + t_2)} & = & e^{At_1}e^{At_2} = e^{At_2}e^{At_1} \\
(e^{At})^{-1} & = & e^{-At} \\
e^{A^T t} & = & (e^{At})^T \\
Ae^{At} & = & e^{At}A \\
\frac{d}{dt}e^{At} & = & Ae^{At}
\end{array}$$

 Makes computation of e^{At} easier for A with certain structure (e.g., diagonal, upper triangular, symmetric, otherse)

State Transition Matrix

Instead of solving in the time domain, consider

$$\dot{x}(t) = Ax(t)$$

$$sX(s) - x(0) = AX(s)$$

$$(sI - A)X(s) = x(0)$$

$$X(s) = (sI - A)^{-1}x(0) = \Phi(s)x(0)$$

In the Laplace domain, the state transition matrix is

$$\Phi(s) = (sI - A)^{-1}$$

• therefore $\Phi(t) = L^{-1}(\Phi(s)) = L^{-1}((sI - A)^{-1})$

Example 2

Recall from last lecture

$$\dot{x} = Ax, \quad A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$

Since A is diagonal, the matrix exponential is

$$e^{At} = \begin{bmatrix} e^{-t} & 0\\ 0 & e^{-3t} \end{bmatrix}$$

• The solution to $\dot{x} = Ax$ with $x(0) = [1 \ 1]^T$ is

$$x(t) = e^{At}x(0) = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-3t} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix}$$

EECE 360 v2.4

9

11

Example 2

Again consider the system

$$\dot{x} = Ax, \quad A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$

with initial condition $x(0) = [1 \ 1]^T$.

- Previously: Solved directly in time domain.
- Now: Solve in s-domain, then take inverse Laplace transform

$$x(t) = \Phi(t)x(0) = L^{-1}((sI - A)^{-1})x(0)$$

EECE 360 v2.4 10

Example 2

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$

Find the inverse matrix

$$(sI - A)^{-1} = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{pmatrix} \end{pmatrix}^{-1}$$
$$= \begin{bmatrix} s+1 & 0 \\ 0 & s+3 \end{bmatrix}^{-1}$$
$$= \frac{1}{(s+1)(s+3)} \begin{bmatrix} s+3 & 0 \\ 0 & s+1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{s+1} & 0 \\ 0 & \frac{1}{s+3} \end{bmatrix}$$

Example 2

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$

Using Laplace transform tables (App. D.1)

$$x(t) = L^{-1}((sI - A)^{-1})x(0)$$

$$= \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-3t} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix}$$

 This is the **same result** as we got from solving directly for e^{At}.

EECE 360 v2.4

EECE 360 v2.4

State Transition Matrix

- The matrix exponential can be easily solved for some forms of A (diagonal, upper triangular, and others)
- **But for general A, an easier way to solve for the state transition matrix is to find its Laplace transform.
- Can be computed in Matlab using 'expm' for specific A and t

EECE 360 v2.4

Example 3

- Given $A = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}$,
- The state transition matrix is

$$\Phi(s) = (sI - A)^{-1}
= \begin{bmatrix} s & 2 \\ -1 & s+3 \end{bmatrix}^{-1}
= \frac{1}{\Delta(s)} \begin{bmatrix} s+3 & -2 \\ 1 & s \end{bmatrix}, \text{ where}
\Delta(s) = s^2 + 3s + 2 = (s+1)(s+2)$$

 The time-domain state transition matrix can be obtained using the inverse Laplace transform

EECE 360 v2.4 14

Example 3

- And using known Inverse Laplace Transforms (Table D.1, Dorf and Bishop),

$$\frac{1}{(s+a)(s+b)} \qquad \frac{1}{(b-a)} (e^{-at} - e^{-bt})$$

$$\frac{s+\alpha}{(s+a)(s+b)} \qquad \frac{1}{(b-a)} [(\alpha-a)e^{-at} - (\alpha-b)e^{-bt}]$$

$$\Phi(t) = \begin{bmatrix} e^{-t} & -e^{-t} + e^{-3t} \\ \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} & -\frac{1}{2}e^{-t} + \frac{3}{2}e^{-3t} \end{bmatrix}$$

UBC

Example 3

State transition matrix (time domain)

$$\Phi(t) = \begin{bmatrix} e^{-t} & -e^{-t} + e^{-3t} \\ \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} & -\frac{1}{2}e^{-t} + \frac{3}{2}e^{-3t} \end{bmatrix}$$

• With initial conditions $x_0 = [1 \ 1]^T$, the free (unforced) response is

$$x(t) = \Phi(t)x(0)$$
$$= \begin{bmatrix} e^{-3t} \\ e^{-3t} \end{bmatrix}$$

EECE 360 v2.4

EECE 360 v2.4

15

State Transition Matrix

• For the homogeneous system $\dot{x}(t) = Ax(t)$ we examined two ways to solve for x(t):

$$x(t) = \Phi(t)x(0),$$
 $\Phi(t) = e^{At}$
 $x(t) = L^{-1}(\Phi(s))x(0),$ $\Phi(s) = (sI - A)^{-1}$

Now, for the inhomogeneous system $\dot{x}(t) = Ax(t) + Bu(t)$ (e.g. with a non-zero input (forcing function)), what is the solution x(t)?

EECE 360 v2.4 17

State Transition Matrix

In the time-domain:

$$\dot{x} = Ax + Bu$$

$$e^{-At}(\dot{x} - Ax) = e^{-At}Bu$$

$$\frac{d}{dt}(e^{-At}x) = e^{-At}Bu$$

$$\int_{0}^{t} \frac{d}{d\tau}(e^{-A\tau}x)d\tau = \int_{0}^{t} e^{-A\tau}Bu(\tau)d\tau$$

$$e^{-At}x(t) - e^{-At}x(0) = \int_{0}^{t} e^{-A\tau}Bu(\tau)d\tau$$

EECE 360 v2.4

State Transition Matrix

Rearranging,

$$x(t) = e^{At}x(0) + \int_{0}^{t} e^{-A(t-\tau)}Bu(\tau)d\tau$$

- Recall that $\Phi(t) = e^{At}$
- Therefore the solution is

$$x(t) = \Phi(t)x(0) + \int_{0}^{t} \Phi(t-\tau)Bu(\tau)d\tau$$
Natural Forced response response

State Transition Matrix

Now examine in the Laplace domain

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$sX(s) - x(0) = AX(s) + BU(s)$$

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

Recall that

$$\Phi(s) = (sI - A)^{-1}$$

Therefore the solution in the Laplace domain is

$$X(s) = \Phi(s)x(0) + \Phi(s)BU(s)$$

EECE 360 v2.4 19

EECE 360 v2.4 20

State Transition Matrix

This solution matches the time-domain solution

$$X(s) = \Phi(s)x(0) + \Phi(s)BU(s)$$

$$x(t) = \Phi(t)x(0) + \int_{0}^{t} \Phi(t-\tau)Bu(\tau)d\tau$$
Natural Forced response

 To solve for x(t) it is often easier to use the Laplace domain, then take the inverse Laplace transform of the result.

EECE 360 v2.4 21

State Transition Matrix

- Note that the system response has two components:
 - Natural response "zero input response" due to initial conditions
 - Forced response "zero state response" due to input
- Overall response is the sum of the two

$$x(t) = \Phi(t)x(0) + \int_{0}^{t} \Phi(t - \tau)Bu(\tau)d\tau$$

$$\Phi(t) = e^{At}$$
Natural response response

EECE 360 v2.4 22

Example 1B

Consider the system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

with initial condition $x(0) = [1 \ 1]^T$ and input $u(t) = \mathbf{1}(t)$.

- What is the state at *t*=1? At *t*=5?
- Solution: Find

$$x(t) = \Phi(t)x(0) + \int_{0}^{t} \Phi(t - \tau)Bu(\tau)d\tau$$

Example 1B

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solve by using the Laplace domain representation

$$X(s) = \Phi(s)x(0) + \Phi(s)BU(s)$$

$$\Phi(s) = (sI - A)^{-1}$$

From Example 2, Lecture 9, we know

$$(sI - A)^{-1} = \frac{1}{(s+1)(s+3)} \begin{bmatrix} s+3 & 0\\ 0 & s+1 \end{bmatrix}$$

Therefore

EECE 360 v2.4

$$\Phi(s)x(0) = \frac{1}{(s+1)(s+3)} \begin{bmatrix} s+3 & 0\\ 0 & s+1 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

EECE 360 v2.4

23

Example 1B

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$X(s) = \Phi(s)x(0) + \Phi(s)BU(s)$$

Natural response:

$$\Phi(s)x(0) = \begin{bmatrix} \frac{1}{s+1} \\ \frac{1}{s+3} \end{bmatrix}$$

Forced response:

$$\Phi(s)BU(s) = \frac{1}{(s+1)(s+3)} \begin{bmatrix} s+3 & 0\\ 0 & s+1 \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix} U(s)$$
$$= \begin{bmatrix} \frac{1}{s+1} \\ \frac{2}{s+3} \end{bmatrix} U(s), \quad U(s) = \frac{1}{s}$$
$$= \begin{bmatrix} \frac{1}{s(s+1)} \\ \frac{2}{s(s+3)} \end{bmatrix}$$

EECE 360 v2.4 25

Example 1B

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Total response (Laplace domain)

$$X(s) = \Phi(s)x(0) + \Phi(s)BU(s)$$

$$= \begin{bmatrix} \frac{1}{s+1} \\ \frac{1}{s+3} \end{bmatrix} + \begin{bmatrix} \frac{1}{s(s+1)} \\ \frac{2}{s(s+3)} \end{bmatrix} = \begin{bmatrix} \frac{1}{s} \\ \frac{s+2}{s(s+3)} \end{bmatrix}$$

Laplace
transform pairs
$$\frac{1}{(s+a)^n} \Leftrightarrow \frac{t^{n-1}e^{-at}}{(n-1)!}$$
$$\frac{1}{(s+a)(s+b)} \Leftrightarrow \frac{e^{-at}-e^{-bt}}{b-a}$$

Total response (time-domain)

$$x(t) = L^{-1}(\Phi(s)x(0)) + L^{-1}(\Phi(s)BU(s))$$

$$= \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix} + \begin{bmatrix} 1 - e^{-t} \\ \frac{2}{3}(1 - e^{-3t}) \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{3}(2 + e^{-3t}) \end{bmatrix}$$

EECE 360 v2.4 26

Ex. 1B

$$x(t) = \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix} + \begin{bmatrix} 1 - e^{-t} \\ \frac{2}{3}(1 - e^{-3t}) \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{3}(2 + e^{-3t}) \end{bmatrix}$$

27

In Matlab, we can plot this result

Ex. 1B

$$x(t) = \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix} + \begin{bmatrix} 1 - e^{-t} \\ \frac{2}{3}(1 - e^{-3t}) \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{3}(2 + e^{-3t}) \end{bmatrix}$$

Defining the variables

Plotting the top graph

EECE 360 v2.4

>> title('Time Response to Initial Conditions and Step Input')

Plotting the middle graph

```
>> subplot(312);
>> plot(t,xN);
>> ylabel('Natural');

    Plotting the bottom graph

>> subplot(313);
>> plot(t,xF);
>> xlabel('t')
>> ylabel('Forced');
```


Ex. 1B

$$x(t) = \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix} + \begin{bmatrix} 1 - e^{-t} \\ \frac{2}{3}(1 - e^{-3t}) \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{3}(2 + e^{-3t}) \end{bmatrix}$$

Can also obtain the cumulative response with 'lsim'

EECE 360 v2.4 29

Summary

- Canonical forms
 - Control canonical
 - Observer canonical
- State transition matrix $\Phi(t)$
- Matrix exponential e^{At}
- State transition equation

$$x(t) = \Phi(t)x(0),$$
 $\Phi(t) = e^{At}$
 $x(t) = L^{-1}(\Phi(s))x(0),$ $\Phi(s) = (sI - A)^{-1}$

EECE 360 v2.4 31

Using Matlab: `lsim'

