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Canonical forms
= Control canonical
= Observer canonical

State transition matrix @(r) = L' (P(s))
Matrix exponential e
Solution to x(7) = Ax(¢) + Bu(r)
x(1) = D(1)x(0) + fcb(t - 7)Bu(t)dt
H_J \0 ~ _J

Natural Forced
response response
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Review: State Trans. Matrix

= For the homogeneous system x = Ax
we examined two ways to solve for x(t):

= Time domain
x(1) = P(1)x(0),
D(t)=e =T+ At + A*
= Laplace domain

x(1) = L (®(s))x(0), D(s) = (sI - A)”

A
20 =¢"

! k
?!+ ot EA + ...

= It is often easier to solve for the state
transition matrix in the Laplace domain
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Review: State Trans. Matrix

= Solve x(#) = Ax(?) + Bu(t), x(0)=x,
for x(t) in either the Laplace- or time-domain

X(8) =D(5)x(0) + P(s)BU(s)
H_J %r_/

x(1) = D(£)x(0) + fcp(r _ 7)Bu(t)dt
H_J \0 ~— _J

Natural Forced
response response

= Often easier to use the Laplace domain, then take
the inverse Laplace transform of the result.
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Review: State Trans. Matrix

= Why is this so useful?
= We now know how to solve any system that
can be put into the state-space form
x(1) = Ax(t) + Bu(r)
y(t) = Cx(1) + Du(t)
for any initial condition x(0)=x, and any input

u(t).

= The solution is the sum of the natural
response (zero-input case) and the forced
response (zero-state case).

EECE 360 v2.4

Today

= Characteristic equation

= Relationship between state-space and transfer
function forms

= Linear Algebra Review 2
» Eigenvalues
= Eigenvectors

= Putting it all together

= Relating state-space, transfer function, and nth-
order differential equations representations

=« Example
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Characteristic equation™

= For a transfer function G(s)=N(s)/D(s)
= The characteristic equation is D(s)=0

= The roots of the characteristic equation are the
poles of G(s).

= Recall that the denominator of the transfer function
of a state-space representation is det(sI-A)
= The characteristic equation is det(sI-A)=0

= The roots of the characteristic equation are the
eigenvalues of the matrix A.

= The poles of G(s) are equal to the eigenvalues
of A (assuming no co-located poles and zeros).
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Linear Algebra Review 2

= The roots of the characteristic equation, previously
described as the poles of the transfer function G(s),

are equivalent to the eigenvalues of the state matrix
A.

= These values are important for analyzing system
behavior and for designing good control laws.

= We need to know how to find the eigenvalues (and
eigenvectors) of such a matrix.
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Linear Algebra Review 2

= Eigenvalues and Eigenvectors

= A nonzero vector v; which satisfies
Av, = Ay,

1

where ), is an eigenvalue of A, is the eigenvector
associated with eigenvalue A,.

= These are particular vectors for which the matrix A
changes their magnitude, but not their direction.

» If A has distinct eigenvalues, the eigenvectors can
be found directly.
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Linear Algebra Review 2

= Useful eigenvalue facts

» If the coefficients of A are real, then the
eigenvalues of A are either real, or complex
conjugate pairs

= The trace of A is the sum of all eigenvalues

= Eigenvalues of A are also eigenvalues of A7

« If Ais nonsingular, with eigenvalues A1, then the
eigenvalues of Al are )\
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Linear Algebra Review 2

= Calculating eigenvalues:
= Eigenvalues and eigenvectors must fulfill
Av, = Ay,
0=(AI-A)y,

« For non-zero v, the matrix (A,I-A) must be
singular. Therefore

0=det(Al-A)

= and the eigenvalues of A are scalar values for
which this holds.
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Linear Algebra Review 2

= Calculating eigenvectors:
= For a given eigenvalue, the corresponding eigenvector fulfills

Av, = Ay,
0=(A1-A),
= For each A, find the matrix (A,I-A). Pick the elements of v;

such that the above equation holds, and not all elements of
v, are zero.

= In Matlab, [V,D]=eig(Aa)
= Columns of V are eigenvectors
= Diagonal elements of D are eigenvalues
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Example 1

= Problem
= Find the eigenvalues and eigenvectors of

1 -1
A<l 2
= Solution

» Eigenvalues
A-1 1
O=det(M—A)=det([ 0 A+1D=(}“_D()”+D

A=l A =-1
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Example 1

= Solution
= Eigenvectors

» Casel: ), =1
0=(A1- A,

0

b

[

1
A+l

Vip

I:V],a
Vip
Vip
2v,

|
|

= Therefore one solution is v, =
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Example 1

= Solution
= Eigenvectors
= Case 2: ), = -1
0= (A1~ A)v,

-1 1
={ 0 A+ 1]

=2 1{|v,,
) { 0 0] [Vz.b

= Therefore one solution is v, =

VZ,a
Vau

=2v,,+Vv,,
=[ A
1
2
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Example 1

= Solve in Matlab
>> A = [1 -1; 0 -1]

1 -1

0 -1
ans =

>> [V,D]=eig(A) 0

vV =
1.0000 0.4472
0 0.8944
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s Check results

>> (D(2,2)*eye(2,2)-A)*V
(:,2)
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Linear Algebra Review 2

= Calculating eigenvectors

= Eigenvectors must be linearly independent (e.g.
cannot be a linear combination of other

eigenvectors)
v, = E v,

J=i

= Repeated eigenvalues require additional work to
find independent eigenvectors (multiply by t, t2,
etc.)

= Eigenvectors must be non-zero (e.g. cannot have
all elements of any eigenvector equal to zero)
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Linear Algebra Review 2

= Eigenvalues of A:
= Find A, such that 0 =det(Al-A)

= Eigenvectors of A:
= Find v;such that Av, = Ay,
0=(AI-A)y,

= Computing eigenvalues and eigenvectors in
Matlab, [V,D]=eig(A)
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Putting it all together

State-space
differential equations

3_.ffWrite as set of 1t order dx/dt=Ax+Bu
. €q y=Cx+Du
Char. egn 0=|sI-A|

nth-order or integro-
differential equations Control- or Y(s)/U(s)=
F=ma, KVL, KCL, etc. observer-

1. Choose state variables

~A)-1
canonical form C(sI-A)'B+D

Laplace

transform Transfer function

G(s)=Y(s)/U(s)
Char. egn 0=D(s)
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Putting it all together

x(1) = () x(0) + fcp(t — 7)Bu(t)dt

D(t) =™

Inverse Lapl
Laplace ¢ apface
transform ranstorm

X(s) =D(5)x(0) + D(s)BU(s)
D(s)=(s[-A)"
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Example: Spring-Mass-Damper

Problem: é

= Consider the spring-mass damper system with Wall é .
input u(t) and output y(t), the position of the fl‘ic;ioné
mass. With state x = [xy, vy J": TS
= What is the state response to an initial condition M

Xo=[1 0]" and an impulse input?

= What is the output response? Assume k=1, b=1, 1 l
M=1. v(t) u(r)

Solution:

= Identify equations of motion (F=ma)

= Find state-space description with states x, v
= Solve for the state transition matrix

= Find x(t) and y(t) as functions of time only.
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Example: Spring-Mass-Damper

= Recall the state is x =[x, v~
= Find dx,/dt and dv,,/dtin terms of x,, Wall

friction

Vi @nd u )

>

= RANVNVVVM

).CM (t) =Vy (t)

\.)M(l‘)=_]]‘(4xM(t) b VM(t)+ I/t(t) 1\“/1 W“\l

= In matrix form:
0] | © (D
[v'Mm‘—ﬁ : ] o)

y(n=[1 0] [f“ Eg] +0" (1)
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Example: Spring-Mass-Damper

= Find the state transition matrix

D(s)=(sI-A)"' =

Wall
friction
b

= RANVVVVM

1 S+ ﬁ
S2+%S+ﬁ _% S 1\‘\‘/1 uml
1 s+1 1
sS+s+1| -1 s
= Plug into the formula X(s) = ®(s)x(0) + ®(s)BU(s)

1 s+1 1|1 1 s+1
(O 0)=—— =
(£)x(0) s2+s+1[—1 SHO] s2+s+1[—1]
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Example: Spring-Mass-Damper

-1 s||1

frictio
_ 1 1 e b
s +s+1]|s

= Therefore the cumulative response is 1 l
X(S)=(I)(S)x(0)+CI)(S)BU(S) y(1)  u(r)

R B NS | I 1Y
ss+s+1\ [ -1 [s]] s*+s+1

_1 1 s+2
=t (—1[1])

Wall

(s)BU(s) = ﬁ [S +l 1] m 1

>

= LA

s+2
s—1
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Example: Spring-Mass-Damper

1 2
= In order to find x(1)=L"'| - 7
sS+s+1]s-1

= Rewrite the denominator as Laplace transform pairs

s+a a
S2+S+1=(S+a)2+a)2, m@g [COS((Ut)
_ 1 _ 3
a—;,w—T w —at
m@@ sin(wt)

= Therefore the first element of X(s) is

Example: Spring-Mass-Damper

= Similarly, the second element of X(s) is

s-=1 S+3 _\3 @
s +s+1 S+ s+1 s +s+1

v, ()= ezcos( ) \/_ezsm( )

= Answer to Problem 1: The state response is

A
S+2 - S+3 +1/3 o xM(t)—ezcos( ) w/_ezsm( )
sS+s+1 \s7+s+1 s+ s+1 o 1, ( ) \/— ( )
1 1 v, (t)=e > cos 3e 3 sin|
x, (H)=e? cos(g t) +/3¢7 sin(% t) al
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Example: Spring-Mass-Damper

= Answer to Problem 2: The output response is
y(t) = Cx(t) + Du(t)
= [1 O]x(t) +0- u(r)
=x,, (1)

y(t)=e K cos( 3t) +4/3¢ s1n(“f t)

= Question: What is another way to find the output
response for a given input and initial condition?
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Example: Spring-Mass-Damper

= In Matlab, we compute the response as

Spring-Mass-Damper system cumulative response

1.5

X

"M

Wall
friction
Va4

= /NS

0.5} |

—

uml

-0.5

-1
0 2 4 6 8 10
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Summary

Today

= Solution to the general state-space equations

= Characteristic equation

= From state-space description

= From transfer function

= Finding eigenvalues and eigenvectors
= Putting it all together

Next class

= Feedback characteristics
= Sensitivity, complementary sensitivity
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