EECE 360 Lecture 13

Feedback Characteristics

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia

http://courses.ece.ubc.ca/360 eece360.ubc@gmail.com Chapter 4.8, 5.2-5.4

EECE 360, v2.4 1

Example 1: Mars Rover

- Solar-powered Sojourner
- Launched in December 1996
- Landed July 4, 1997
- Remotely operated from earth

EECE 360, v2.4

Example 1: Mars Rover

- Goal: Operate the rover with modest effects from external disturbances and with low sensitivity to the change in the gain *K*.
- Open-loop configuration

$$Y(s) = G(s)(D(s) + K(s)R(s))$$

$$= \frac{1}{(s+1)(s+3)}D(s) + \frac{K}{s^2 + 4s + 5}R(s)$$

EECE 360, v2.4

4

2

Example 1: Mars Rover

Closed-loop configuration

$$Y(s) = G(s)(D(s) + K(s)(R(s) - Y(s))$$

$$= \frac{G(s)}{1 + G(s)K(s)}D(s) + \frac{G(s)K(s)}{1 + G(s)K(s)}R(s)$$

$$= \frac{1}{(s+1)(s+3) + K}D(s) + \frac{K}{(s+1)(s+3) + K}R(s)$$

EECE 360, v2.4 5

Example 1: Mars Rover

Sensitivity function (effect of noise on output)

for varying K

$$S = \frac{G(s)}{1 + G(s)K(s)}$$

$$= \frac{1}{(s+1)(s+3) + K}$$

$$= \frac{1}{s^2 + 4s + (3+K)}$$

EECE 360, v2.4

Example 1: Mars Rover

- Steady-state behavior to D(s) = 1/s, R(s) = 0
 - Open-loop

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
$$= \frac{s}{(s+1)(s+3)} \cdot \frac{1}{s} = \frac{1}{3}$$

Closed-loop

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$

$$= \frac{s}{(s+1)(s+3) + K} \cdot \frac{1}{s} = \frac{1}{3+K}$$

Outline

- Today
 - Second-order systems
 - Time domain specifications
 - Test input signals
 - Similar systems (3rd order, 2nd order with zeros)
- Next class
 - Input type and system type number
 - Steady-state error

EECE 360, v2.4

EECE 360, v2.4

7

Second-order systems

- Common performance measures
 - Transient response
 - Steady-state response
- Common test input signals to evaluate system response
 - Impulse
 - Step
 - Ramp
 - (Parabola)
- System performance is determined by the location of the poles

EECE 360, v2.4

9

Second-order systems

- Why do poles determine system response?
- Recall that for $\dot{x}(t) = Ax(t) + Bu(t)$ the total response is

$$x(t) = \Phi(t)x(0) + \int_{0}^{t} \Phi(t-\tau)Bu(\tau)d\tau$$

where $\Phi(t)=e^{At}$

The poles are determined by

$$0 = \det(\Phi(s)) = \det(sI - A)^{-1}$$

which are the eigenvalues of A.

EECE 360, v2.4 10

Second-order systems

Generic second-order system

$$G(s) = \frac{{\omega_n}^2}{s^2 + 2\zeta \omega_n s + {\omega_n}^2}$$

- Natural frequency ω_n
- Damping ratio
 ζ
- Characteristic equation

$$0 = s^2 + 2\zeta \omega_n s + \omega_n^2$$

EECE 360, v2.4

Spring-Mass-Damper System

• Input u=f(t), Output y=x(t)

$$u(t) = m\ddot{x}(t) + b\dot{x}(t) + kx(t)$$

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$$

$$G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s & -1 \\ \frac{k}{m} & s + \frac{b}{m} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$G(s) = \frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}} = \frac{a}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

EECE 360, v2.4 11

12

Second-order systems $G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$

- Underdamped
 - Natural frequency $\omega_n > 0$
 - Damping ratio 1 > \(\ \ \ \)
 - Damped frequency $\omega_d = \omega_n \sqrt{(1-\zeta^2)}$

- Critically damped
 - Damping ratio
- Overdamped
 - Damping ratio ζ > 1

EECE 360, v2.4

Natural Response (no input)

$$\frac{w_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \Leftrightarrow \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t), \zeta < 1$$

EECE 360, v2.4 14

Second Order System Poles

Underdamped

$$G(s) = \frac{{\omega_n}^2}{s^2 + 2\zeta \omega_n s + {\omega_n}^2}$$

13

Complex roots due to the quadratic

$$s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

$$= -\sigma \pm j\omega_d$$
for $\zeta < 1$ and $\sigma = \zeta \omega_n$

$$\theta = \cos^{-1} \zeta$$

EECE 360, v2.4

Second Order System Poles

- Critically damped
- Repeated poles

$$s_{1,2} = -\omega_n$$

since $\zeta = 1$

- Overdamped
 - Unique poles on the real axis

$$s_{1,2} = -\omega_1, -\omega_2$$

since $\zeta > 1$

 $-\omega_n$

EECE 360, v2.4

σ

Test Input Signals

$$r(t) = \begin{cases} A & \text{for } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$R(s) = \begin{cases} 0 & \text{otherw} \\ R(s) = \frac{A}{s} \end{cases}$$

$$r(t) = \begin{cases} At & \text{for } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$R(s) = \frac{A}{s^2}$$

$$R(s) = \frac{2A}{s^3}$$

• "Base-case" used to evaluate system response.

EECE 360, v2.4

17

Second-Order System $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Second-Order System $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

- Effect of ω_n
 - Frequency of oscillations
- Effect of ≿ Damping

Second-Order System

EECE 360, v2.4

Second-Order System

- Rise time
 - Time it takes output to reach the vicinity of its new set point.

- Peak time
 - Time it takes the output to reach the $T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

- Overshoot
 - overshoots its final value, divided by $M_p = 1 + e^{-\xi\pi/\sqrt{1-\xi^2}}$ its final value (resetting). Maximum amount the output its final value (usually a %age)

$$M_p = 1 + e^{-\xi \pi / \sqrt{1 - \xi^2}}$$

- Settling time
 - Time it takes the transients to decay to 2% of final value

$$T_s = \frac{4}{\xi \omega_n}$$

EECE 360, v2.4

21

23

Second-Order System

22

Second-Order System

Trade-off between specifications

When specifications conflict

- Design specifications may be conflicting
 - For example, several time domain specifications as well as a steady-state error specification
- It may not be possible to meet all specifications.
- Find a compromise which is the "best" solution.
- This is often a matter of engineering judgment.

EECE 360, v2.4

24

EECE 360, v2.4

Example 2: A Simple Loop

The benefit of feedback can be illustrated:

The rise time and sensitivity of the system are reduced as K increases.

For a unit step disturbance

EECE 360, v2.4

Example 2: A Simple Loop

EECE 360, v2.4 26

Effect of a Third Pole

For the third-order system

$$G(s) = \frac{{\omega_n}^2}{\left(s^2 + 2\zeta\omega_n s + {\omega_n}^2\right)(s\gamma + 1)}$$

Experiments show that when

$$\left|\frac{1}{\gamma}\right| \ge 10 \left|\xi \omega_n\right|$$

25

27

Example 2

• Find *K* and *p* such that the overshoot is less than 5% and settling time less than 4 seconds

$$Y(s) = \frac{G(s)}{1 + G(s)}R(s)$$

$$= \frac{K}{s^2 + ps + K}R(s)$$

$$= \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}R(s)$$

EECE 360, v2.4 28

Example 2

- Damping ratio $\xi = 0.707$ provides an overshoot of 4%.
- Settling time is determined by

$$T_s = \frac{4}{\xi \omega_n} < 4$$
$$\therefore \xi \omega_n > 1$$

EECE 360, v2.4

29

Summary

- Today
 - Test input signals
 - Second-order systems
 - Performance characteristics
- Next class
 - Steady-state error
 - Type number

UBC

Example 2

• With $\zeta = 1/\sqrt{2}$, $\omega_n = \sqrt{2}$ the poles will be located at

$$s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

$$= -\frac{1}{\sqrt{2}} \cdot \sqrt{2} \pm j\sqrt{2} \cdot \sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^2}$$

$$= -1 \pm j$$

 We can find K and p by matching the coefficients of the characteristic equation

$$s^{2} + ps + K = s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}$$

$$p = 2\xi\omega_{n} = 2$$

$$K = \omega_{n}^{2} = 2$$

EECE 360, v2.4 30

EECE 360, v2.4 31