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Example 1: Mars Rover

= Solar-powered
Sojourner

= Launched in
December 1996

= Landed July 4, 1997

= Remotely operated
from earth

EECE 360, v2.4

Example 1: Mars Rover

= Goal: Operate the rover with modest effects from
external disturbances and with low sensitivity to the
change in the gain K.

= Open-loop configuration
D(s)

Controller Rover
+ (s
K(s+ 1)(s +3) 1 Ys)
R(s) > 2 » Vehicle
s> +4s+5 + (s+ D)(s+3)

position

Y(s) = G(s)(D(s) + K(s)R())

! LSR(S)

"G+ P Ty
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Example 1: Mars Rover

= Closed-loop configuration

Example 1: Mars Rover

= Sensitivity function (effect of noise on output)

D(s) — for varying K ;
/'u/\;(: [ — K —:Cg—v L > \'j:l‘i\:le _ G g’ - - >
t=0 - + +D6+3 position - 1+ G(S)K(S) é -10
1 E -20
T G+DGs+3)+K )
Y(s5) = G(s)(D(s) + K(s)(R(s) = Y (5)) 1 &
G(s) G(s)K(s) T .
=—1+G(S)K(s)D(s)+—1+G(s)K(s)R(s) s +4s+(3+K) %
1 K £ 4
"G+ kPO GG sk X
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Example 1: Mars Rover Outline
= Steady-state behavior to D(s)= 1/s, R(s)=0 = Today

= Open-loop
limy(?) = lir{)le(s)
1

"3

s 1
T (s+D(s+3) s
= Closed-loop
limy(?) = linole(s)
_ s A_1
T (s+D(Gs+3)+K s 3+K
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= Second-order systems

= Time domain specifications

= Test input signals

= Similar systems (3" order, 2" order with zeros)

= Next class
= Input type and system type number
= Steady-state error
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Second-order systems

= Common performance measures
= Transient response
= Steady-state response
= Common test input signals to evaluate system
response
= Impulse
= Step
= Ramp
= (Parabola)
= System performance is determined by the location of
the poles
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Second-order systems

= Why do poles determine system response?

= Recall that for x(¢) = Ax(¢) + Bu(t)
the total response is

x(£) =|®(£)x(0) + ]@(r — 7)Bu(t)dt

0

where o(t)=e4
= The poles are determined by

0 = det(P(s)) = det(s] - A)™
which are the eigenvalues of A.
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Second-order systems

= Generic second-order system

2
w

G(s) = 1
) s’ +20w s+,

« Natural frequency o,
= Damping ratio C

= Characteristic equation

2 2
0=s"+28w,s+w,
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= Input u=f(t), Output y = x(t)
u(t) = mi(r) + bi(t) + kx(t)

g [0 L]0
R R UL s

Vertical
Displacement

) -1 T 0

6o-0 ok ol |7
m § m m

L a

G(s)= n =

2, bgy k2 2
ST+ s+ s +20w s+,
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External
Force
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2
wn

= Underdamped
« Natural frequency o®,>0
= Damping ratio 1>¢>0 ,
= Damped frequency w,= o, V(1-22) 0

G(s) = > 2
Second-order systems ¢ *xeste

Natural Response (no input)

r<1 Jon
oy g,“increusmg/
= Critically damped U A\
= Damping ratio t=1 =1 e {1 .
(=
= Overdamped \

= Damping ratio C>1
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2
w
- & ——n e S“ntsin(wn /1 — ¢2t),¢ < 1

s2+2wns+w2 /12

(1)

Yo Overdamped case

(=]

\/ \/ ~_— » Time

Underdamped case

-

-
P
# e~ @ envelope
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Second Order System Poles

2
w

= Underdamped G(s) =~ :

s +20w, 5+,
=« Complex roots due to
the quadratic

Jjo
. 2 . -
= —Cw, = jo1-8° ] o VT= 2
|
=—-0 %= ]a)d . : \“n
cos~loy
for £ <land o=Cw, ﬁ\/}
' o
~tw, 0
|
|
|
e S —jo, V1 — SVZ
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Second Order System Poles

2

. G(s)=
= Critically damped s+ 28w s+,
= Repeated poles jo
8§ ,=-0,
since § =1
A (o}
= Overdamped ~®n
= Unique poles on the real axis o
S12_ —W,,~W,
since £ >1 » .
N\ N\ o
Ty Ty
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Test Input Signals

2
w,

Second Order System Sedosro]

Step Ramp Parabolic
r(1) r(n) (0 1.8 70l
1.6 02
A
1.4
0.4
1.2
0 0 0
0 t—» 0 t—» 0 t—>» o 10 0.7
At fort=0 At* fort=0 10
r(t) = A fort 2.0 r(t) = or ¢ = r(t) = . 08
0 otherwise 0 otherwise 0 otherwise
A A A 0.6 2.0
R(s)=— R(s)=— R(s) = — 0.4
S S3
= “"Base-case” used to evaluate system response. 0
0'00 2 4 6 10 12 14
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2
UBC G(s) = @, . UBC
5 2 5
Ny~ s+ 2Ca)ns + wn N~
Second-Order System Second-Order System
1.6 w, = 10ra ec }’(f)
. adians/second A
| EffeCt Of w n ' /\lrmlmnhcc( nd Mp __________
= Frequency of 3 ol
oscillations 2ol “|
: |
n'z) Y0 i T
= Effect of T I
. |
= Damping P I
0s] =% i :
é w, =5 radians/second :
j;: 06 L » Time
) 04
0.2
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Second-Order System

= Rise time T - 2.16¢ +0.60
= Time it takes output to reach the ’ ,
vicinity of its new set point.
= Peak time o
= Time it takes the output to reach the 7, = =y
maximum overshoot point w, 1-¢
= Overshoot
= Maximum amount the output _en/1-e?
overshoots its final value, divided by M P I+e
its final value (usually a %age)
= Settling time
= Time it takes the transients to decay 7 _ 4
to 2% of final value 5 Lo,
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Second-Order System

Normalized rise time

v
wn

Actual rise time

Linear approximation

” e
20 T, = 2.16{ + 0.60 \ L

n

,T,

0 01 02 03 04 05 06 07 08 09 1
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UBC
——
W) Second-Order System
= Trade-off between
specifications 1w 5.00
90 4.80
= 80 Percent 4.60
=} sare]
_:: 70 overshoot 440
o
2 60 4.20
2 50 4.00
E
g 40 3.80
57; 30 3.60
i)
a 20 3.40
10 3.20
0 3.00
0.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
Damping ratio, {
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When specifications conflict

w0.T,

Design specifications may be conflicting

= For example, several time domain specifications as well as a
steady-state error specification

It may not be possible to meet all specifications.
Find a compromise which is the “best” solution.
= This is often a matter of engineering judgment.

Performance Performance

measure, M, | | measure, M,
M.
>X 2

Parameter, p 24
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Example 2: A Simple Loop

The benefit of + 1 X !
feedback can ro—O— & O >
be illustrated:

The rise time 10

and sensitivity 100

of the system o
arereduced as

K increases. el
0.08 F—— - - —— A~ -~ e —— K=10
0

For a unit step
disturbance

—-0.70

0 1 2 4 5
Time
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Example 2: A Simple Loop

Sensitivity function

Bode Diagram
T

Magnitude (dB)
; o n
5 o 5

B
=]

-60
180
135

90

Phase (deqg)

45

10" 107 10 10 10
Frequency (radfsec)
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V%) Effect of a Third Pole

= For the third-order system
2
w ]
G(S) = 2 1 2 A = roots of the el
(s + 2§a}ns + a)n )(S»y + 1) closed-loop //‘\\

system /
i /

I

T
\
- \
\
\

I'e

—p

Experiments show that when

‘1
Y
the third-order system can be approximated by a

second-order system to meet specifications for
overshoot and settling time

<

|
I
I
I
I
|
T
17¢
I
|
I
N
\(
NS

= 10|Ca)n
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Example 2

= Find Kand p such that the overshoot is less
than 5% and settling time less than 4

seconds
+ E(s K
R(s) © G(s) = G + p) » V(s)
G(s) B
Y(s)= 1+ G(s) R(s)
= R(s
s*+ ps+K (s)
2
a)n
= > R(s)

s°+ 28w, s+,
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Example 2

= Damping ratio € = 0.707 provides an

Example 2

s With T = 1/v2, o, = V2 the poles will be located at

overshoot of 4%. _ —Cw
= Settling time is determined by
4 : *J ‘/_ \/
T = <4 _¢=0707 ¢
: Cwn . = —li ]
1 . ' . . .-
cw, > e 9 ! = We can find Kand p by matching the coefficients of
(0,1 < L2 the characteristic equation
/><\\ 53*:1 s +ps+K=5"+2Lw,s+0,°
) N\ ! p= 2(_:60" =2
e K= a)n2 =2
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Summary
= Today

= Test input signals
= Second-order systems
= Performance characteristics

= Next class
« Steady-state error
= Type number
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