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Chapter 6.1 - 6.5

= Two different notions of stability

= Ability of the system to return to equilibrium after
an arbitrary displacement away from the
equilibrium (internal stability)

= Ability of the system to produce a bounded output
for any bounded input (BIBO stability)

= For linear systems, these two notions are
closely related.
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Review: BIBO Stability™*

= Assuming there is no pole-zero cancellation in the
transfer function, and A, i €{l,---,n} are roots of the
nt order characteristic equation:

Stability Pole location

BIBO stable A A, Re())<0 All poles in open LHP
Marginally stable 3, Re(A)=0, A#M A Any simple poles on

~3an,, Re(n,)>0 imaginary axis, and no
poles in RHP
Unstable 3n;, Re(M)=0, =)\ Any repeated poles on
imaginary axis, or
3h;, Re(n)>0 Any poles in RHP
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Internal vs. BIBO stability

= Internal stability implies BIBO stability

= Internal stability is stronger in some sense, because
BIBO stability can “hide” unstable behaviors which
don’t appear in the output

s—1

Consider the transfer function G(s) = (5=D(s+3)

= Zero at s=+1 cancels unstable pole
= But is this really BIBO stable?

= With no pole-zero cancellation, same conditions
exist for internal stability as for BIBO stability.
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Review: Feedback & Stability**

= Feedback often improves stability.

= However, increasing the gain past a certain threshold
can destabilize a system.

= This threshold occurs when at least one root of
the characteristic equation has real part equal
to 0.

= Increasing the gain can push poles from LHP to the
RHP.
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Review: Feedback & Stability

= For what values of K will the system with the
following characteristic equation be stable?

0=s5+2s+4s5+K
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Today

= Review:
= BIBO stability (all poles with negative real part)

« Marginal stability (no repeated poles on the
imaginary axis)

= Today
= Routh-Hurwitz stability criterion
= Introduction to Root Locus
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Routh-Hurwitz Criterion

= Consider the polynomial characteristic
equation

-1
Os)=s"+a, s" +-+as+a,

= Routh-Hurwitz stability criterion is a test to
check for stability without computing the
roots of characteristic equation. The test
checks whether or not all roots of a
polynomial have negative real part.

= It is presented here without proof. More
details are in Dorf, Chapter 6.2.
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Routh-Hurwitz Criterion

= Necessary and sufficient conditions for low-order
systems:

= First-order: All roots of Q(s)=a,s+a, are in the LHP if all
coefficients are positive.

= Second-order: All roots of Q(s)=a,s’+a,s+a, are in the LHP
if all coefficients are positive.

= Third-order: All roots of Q(s)= a;s°+ a,s’+a,s+a, are in the
LHP if all coefficients are positive and a,a,-a,a;>0.

= Positive coefficients for n" order polynomials are
necessary but not sufficient conditions for
stability.
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37 Routh-Hurwitz Table

= Create a table based on the coefficients of the
characteristic equation

= The first two rows are taken directly from Q(s)
= The remaining rows are computed from these two

FOwWs

s" 1 a2 ayq (4
Sn-l an—l an-j’ an-5 ()
42 bn-] bn-3 bn-5

Sn_3 Co-1 Ch3 Cu-s

5
S 0 h n-1
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V%) Routh-Hurwitz Table

= The number of roots of Q(s) with positive real part
is equal to the number of sign changes in the
first column of the Routh-Hurwitz table.

Q(s) =s"+a,s" + ... +a;s+aq,

N
s" 1 \an_2 a,, |®
s / Apg |3 |Gys |0
s 16,y |bys |bys

n-3
S Cn.1 ] Cnos
.
So hn—l /
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Routh-Hurwitz Criterion

One row is

calculated from

== the two rows
directly above it.

b, The number of roots in the right half
o e 0 plane equals the number of sign
G changes in the first column.
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Example 1 Example 2: Robotic Arm
. 20K (s5+0.1)
T 1155 + 74255 +1215° +20Ks + 2K
(D(S) =5 +2ps*+s, p#0
R s [ L 74 20K
s 110 st f15 121 2K
— 7 i20i0 0 for p >0, there are 0 roots in RHP s [65.9 | 19.86K
AN ~ i ‘e ar i i [121-4.52K L 2K
—s i 1:0 for p <0, there are 2 roots in RHP RIRER < P -
L o [2271K ~89.76K"
D T b 121-452K
S E2K
121-4.52K > 0,2271K —89.76K* > 0,K >0
= <2271 55308
¢ - =2 G =400
K<im =267 89.76
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Root Locus Root Locus

= Performance of a control system is described in terms
of the location of the roots of the characteristic
equation in the s-plane.

= A desired response of a closed-loop control system
can be achieved by adjusting one or more system
parameters (control gains).

= Root locus is a method for analysis and design of
control system

= The root locus plot is a graph of the locus of roots as
one system parameter is varied
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Walter R. Evans,
= Developed by W. Evans while a 1920-1999
graduate student at UCLA :

= Use the poles and zeros of the
open-loop system to determine
the closed-loop poles when
one parameter is changing
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G(s) » Y(s)

7:
A 4

+
R(s) —>?—P

= The root locus originates at the poles of G(s) and
terminates on the zeros of G(s).

1+ KG(s)=0
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Root Locus Method Root Locus Method
= Consider the unit feedback system with a scalar = Consider the unity feedback system with
control gain K G(s) = 1/(s(s+2))
N = The characteristic equation is
R(s) K > OO > 19 0=1+KG(s)=1+K
B s(s+2)
=s+2s+K
1+ KG(s) =0 = Start by examining K=0: The poles are s = 0, -2.
= For 0<K<1, the system is overdamped with poles at
= The root locus is the path of the roots of the S =-1=41-K
characteristic equation in the s-plane as the gain is = For K=1, the system is critically damped with poles
varied (from 0 to infinity) ats=-1, -1.
= For K>1, the system is underdamped, with poles at
s= —1x j//K -1
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Root Locus Method Root Locus Method
: . . 1+ KG(s) =0
= Consider the unit feedback system with a scalar N(s)
control gain K K . =0

D(s)+KN(s)=0

When K =0, this collapses to D(s) = 0.
Since the roots of D(s) = 0 are the poles of G(s), those are the
closed-loop poles for K = 0.

When X is large, D(s) + KN(s) = L+ N(s) _ 0 tends to NGs) _ 0
K D(s) D(s)

thus the closed-loop poles tend to the roots of N(s) =0, i.e. the

ce N
open-loop zeros, and also to infinity if D is strictly proper.
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Example 3: Root Locus Example 4
1
0=1+KG(s)=1+K = Consider the system with transfer function
s(s+2) G s+1
_e+25+K . (8)= 2511
¢ nereasing = The characteristic equation is:
I; 0.2 o Ko
2 / = Values of K for KG/(1+KG) to have real roots:
04 K=1
K increasing = Values of K for KG/(1+KG) to have imaginary roots:
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Example 4 Example 4
Suppose : ForK =0, s°(0) = _%ijg <—| Poles of G(s) |
14KG(s) =1+ K= =0
s +s+1
S +s+1+Ks+K=0 (Char. Equation) ForK =3, s*(3)=—%(3+l)=—2
S+(K+Ds+(K+1)=0
A=(K+1 -4K+1)=K*-2K -3 For large X,
“Kye_L KoKk e1-4
For A>0, s'(K) = —%(K+1):%\/K2 2K -3 s (K) =5 (K+DxoVKT-2K+1-4
1 1
. =——(K+D)z—(K-1)*-4
ForA<O0, s (K)=—%(K+l)¢j%1/|K2-2K_3| 2 2 Zero of G(s) |
1 1
~——(K+)x—(K-1)=-1,-K
(this occurs for —1< K < 3) (roots) 2( D 2( )=-1
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Example 4: Root Locus
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Summary

= Feedback and stability

= Routh-Hurwitz stability criterion

= Check for stability without computing roots of
characteristic equation

= Root Locus

= Poles and zeros of the open-loop system can
determine the closed-loop poles as gain K
increases from 0 to infinity

= Starts at poles of open-loop system, ends at zeros
of open-loop system, or at infinity
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