EECE 360 Lecture 20

Controllers in Root Locus

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia

http://courses.ece.ubc.ca/360 eece360.ubc@gmail.com

Chapter 7.2 – 7.4, 7.12

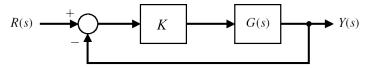
EECE 360, v2.4 1

- Complete root locus sketches
 - Number of poles, zeros, and asymptotes
 - Segments on the real axis
 - Center/angle of asymptotes
 - Departure/arrival angles
 - Imaginary axis crossings
- Today: Standard Controllers
 - PID
 - Lead
 - Lag

EECE 360, v2.4

Root Locus Method

Unity feedback



- Characteristic equation 1 + KG(s) = 0
- The root locus originates at the poles of G(s) and terminates on the zeros of G(s).

Gain and Phase Criterion

A location s* is on the locus if

$$1 + K G(s^*) = 0$$

which is equivalent to

$$G(s^*) = -1/K$$

- Recall that s is a complex number (therefore it has a magnitude and a phase) and assume K > 0
- Phase condition

angle[$G(s^*)$]= $180^{\circ} \pm 360^{\circ} n$

determines which points are on the locus

The magnitude condition

$$|G(s^*)| = 1/K$$

determines the value of K at s*

EECE 360, v2.4 3

EECE 360, v2.4

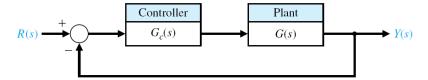
Root Locus for Design

- Location of roots indicates performance of the closed-loop system.
- Move roots along the root locus by varying K.
- Pick K to accommodate transient or steady-state constraints (e.g. desired damping ratio, natural frequency, overshoot, etc.)
- Poles closest to the imaginary axis are dominant in because they are slowest (e.g. they take the longest to die out).

EECE 360, v2.4

Root Locus for Design

Unity feedback with controller G_c(s)



- The controller G_c(s) can take many forms
- These controllers alter the root locus in different ways.

EECE 360, v2.4

Common controllers

- Proportional-Integral (PI)
- Proportional-Derivative (PD)
- Proportional-Integral-Derivative (PID)
- Phase lead
- Phase lag

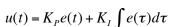
5

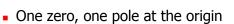
7

PI Control

- PI controller
 - Improves steady-state behavior

PI controller:
$$G_c(s) = K_p + \frac{K_I}{s}$$





PD Control

- PD controller
 - Improves transient response

PD controller:
$$G_c(s) = K_P + K_D s$$

$$u(t) = K_P e(t) + K_I \int e(\tau) d\tau$$

One zero

EECE 360, v2.4

PID Control

- Good performance in a wide range of operating conditions
- Dependent on 3 parameters
- Two zeros and one pole
- Standard PID controller:

$$G_c(s) = K_P + \frac{K_I}{s} + K_D s$$

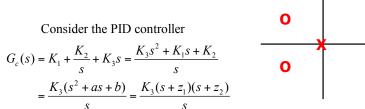
which corresponds to

$$u(t) = K_P e(t) + K_I \int e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

EECE 360, v2.4 10

PID Control

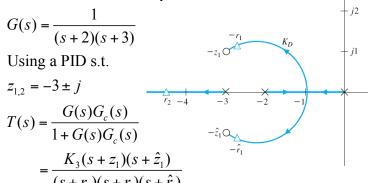
Consider the PID controller



The PID controller introduces a pole at the origin and two zeros

PID Controller

Consider the system



EECE 360, v2.4 12

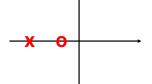
11

9

Phase lead control

- Lead controller
 - Improves transient response

$$G_c(s) = K \frac{s+z}{s+p}, \quad z < p$$



- One zero, one pole
- Zero closer to the origin than the pole

EECE 360, v2.4

13

Phase lag control

- Lag controller
 - Improves steady-state response

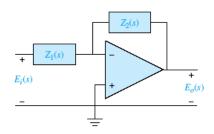
$$G_c(s) = K \frac{s+z}{s+p}, \quad p < z$$

- One zero, one pole
- Pole closer to the origin than the zero

EECE 360, v2.4

Controller Design

- Recall that RLC Op-amp circuits are common ways to build controllers
- The constants K_P, K_I, K_D, K are determined by appropriate choices of R,C

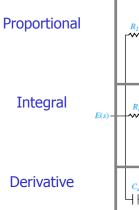


$$G(s) = \frac{E_o(s)}{E_i(s)} = -\frac{Z_2(s)}{Z_1(s)}$$

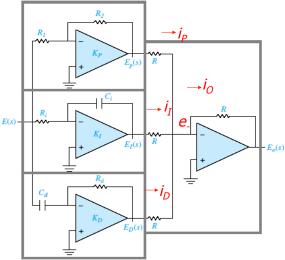
EECE 360, v2.4

15

PID



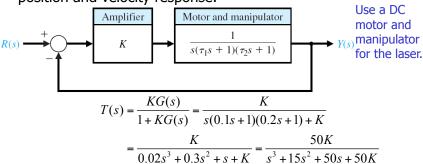
EECE 360, v2.4



16

Laser Manipulator Control

The use of lasers for surgery requires high accuracy for position and velocity response.



Goal: Find K s.t. $e_{ss} \le 0.1$ mm for a ramp input r(t) = At where A = 1 mm/s

EECE 360, v2.4

Laser Manipulator Control

For a ramp input
$$R(s) = 1/s^2$$
, $e_{ss} = \frac{1}{K_v}$ where $K_v = \lim_{s \to 0} s \cdot K \cdot G(s) = K$

Hence
$$e_{ss} = \frac{1}{K} \le 0.1 \implies K \ge 10$$
.

$$s^3 + 15s^2 + 50s + 50K = 0$$

$$s^2$$
 15 50K

$$s^1 = \frac{750 - 50K}{15} = 0$$
 $15s^2 - 750 = 0 = 15(s^2 - 50) = 15(s + 7.07j)(s - 7.07j)$

$$s^0$$
 50K

$$\frac{750-50K}{15} \ge 0 \implies K \le 15$$

To ensure a stable system: 0<K<15.

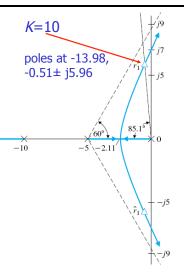
EECE 360, v2.4

Laser Manipulator Control

-13.98

 K=10 results in a stable system and also satisfies the steady-state error specification.

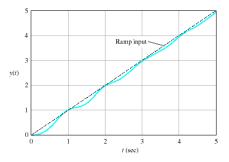
What about transient performance characteristics?



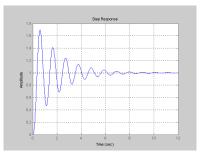
UBC

17

Laser Manipulator Control



The response to a ramp input for a laser control system



The system response to a step input (highly oscillatory).

-> cannot be tolerated for laser surgery

EECE 360, v2.4

EECE 360, v2.4

20

- Design with root locus
 - Choosing K to meet transient/steady-state response criteria
- Common controllers
 - PID
 - Lead
 - Lag

EECE 360, v2.4 21