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Context

= Modeling LTI systems
» Transfer functions
= State-space
= Analysis and control of LTI systems
= Root locus
= Bode (this week)
= Nyquist
= State-space methods
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Frequency Response Plots

= See Dorf, Appendix G G(jw) = G(s)| _
(online) for review of e
complex numbers = G(jw)| e
Jarer O 0 2w
' = R(w) + jX (w)
Imaginary axis . 2 _ 2 2
3 IGGo)[ =[R()] +[X(w)]
et LT LD ™ J o i) = tan”! X(w)
i ¢(jw) =tan R(®)
: bf——————————mc = rei?

0 P Real axis

FIGURE G.1 Rectangular form of
a complex number.

0 a

FIGURE G.2 Exponential form of
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Frequency Response Methods

= Frequency response: The steady-state response of
the system to a sinusoidal input as the frequency
varies.

= Examine the transfer function G(s) when s = jo.

= Consider a test input, r(t) = A sin(wt)
= The output is| y(1) = A|G(jw)|sin(wt + ¢),| ¢ =LG(jw)
which has
= Same frequency as input
= Different magnitude than input
= Different phase than input
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Frequency Response

= Frequency response: The steady-state response of
the system to a sinusoidal input as the frequency

varies.

= Another interpretation:
The frequency response is
the sum of log magnitude
and phases of vectors from
poles and zeros of G(s) to
the point jw on the
imaginary axis
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Frequency Response

= Frequency response: The steady-state response of
the system to a sinusoidal input as the frequency

varies.

= Consider the system
2

Gls)=——
(jo-s)(jo -5

2
G(s)] = ————
‘]a)—sl‘]w—s,‘

LG(s)=-L(jo-5)-L(jo-s5)
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Hendrik Wade Bode
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1905-1982, USA

PhD from Columbia in
1935

Entire career at Bell
Labs

Invented magnitude
and phase frequency
plots in 1938

Many other
contributions in
electrical engineering
and control

Laplace vs. Fourier Transform

Laplace transform:

F(s)= LU0} = [f()e™dt

Fourier transform:

where s =0 + jo

F(jo)=L{f (0} = [f (e d1

Setting s = jow in F(s) yields the Fourier transform of /'(¢)

(But Fourier Transform is often used for signals that exist for t<0)
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Bode Diagram

= Logarithmic plot of gain and phase of a
transfer function G(s) in the frequency
domain G(jw)

= Two plots

» Logarithmic gain 20 /og,,/G(jw)/ (dB) vs. logyw
= Phase angle ¢(jw) (degrees) vs. logyw

= Recall that since log(ab) =loga +logh
L(ab)=La+ 1Lb
effects of poles and zeros is additive in Bode
diagrams.
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Bode Diagram

= On a Bode plot, for simple poles and zeros,
slopes are approximately linear
= Log gain - Log frequency
= Phase - Log frequency

= General procedure:
» Start a low frequencies
» Identify break points
= Approximate slopes before and after break points

» Effect is cumulative as frequency increases, for
gain and phase
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Bode Diagram: RC Filter

= Example: RC filter

t+o A% % o+
Gisy=02® 1 i) cAR VO
Vi(s) sRC+1 .
G(jw)=— (t=RC)
jot +1

1

1 2
20log| G|=20log| ———— | =-10log (1 + (wt)?
g|G| g(H(m)z) g(1+(wr))

¢(w) = —tan™ @t
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Bode Diagram: RC Filter

= Gain
= For o « 1/t, |G(jw)
= For w » 1/t, |G(jw)
= At o = 1/t, |G(jo)|

~ -10log(1) = 0dB
= -10 log( (wt)? ) = -20 log(wt) dB
=-10 log(2) = -3.01 dB

= Phase 0
= angle(G(jo)) = -tant(wt) 3
L] At(u=1/1:, :;U_lo
angle(G(jo)) = -tan (1) =
= -450 -20
1 | 10
107 T T
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¢(w), degrees

T Asymptotic
xa B~

curve
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-20dB/dec

—45

—90

Linear L~
approximation \

o1

Break frequency
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Bode Diagram

» Standard components in a transfer function
Constant gain K

Poles (or zeros) at the origin (jw)

Poles (or zeros) on the real axis (jot+1)
Complex conjugate poles )go)r Zeros)

(1+(2¢/w,,) jo + (Juw/w,

= Use generic Bode plots of each of these
components as “building blocks” to determine
Bode plots of more complicated transfer
functions
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Bode Diagram

Bode Diagram

Decompose a high order transfer function
into a product of simple standard
components

These components are additive in Bode
plots

This is the main advantage of using
logarithmic plots
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= 1. Constant gain K 40
= Transfer function
dB 0
G(s)=K
= Log gain _400.1 1 10 100
201log|G(jw)|=20logK 180 (o
= Phase ¢ * v
LG(jw)=0° 30 e
S g (jo)™!
—180 (jo™2
0.1 1 10 100
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Bode Diagram

= 2. Poles (or zeros) at  © Gop
the origin (jo) ()
= Transfer function
1 dB 0
G(s) = —
§ (jo)™!
H _ (ja))_2
" LOg galn 400.1 1 10 100
201og|G(jw)| = —20Nlogw 180 (o
@ 90 (jw)
= Phase ¢ g
LG(jw)=-90°N £ o o
S g (jw)™!
—180 (jw)—z
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Bode Diagram

w=11
= 3. Poles (or zeros) on 4
the real axis (jot+1)
= Transfer function
1 dB O —
Gls) = \
sT+1
" Log galn _400.1 1 10 100
2010g|G(jw)| = -101og(l + (wT)* )10
= Phase g
£G(jw) = —tan™ (wT) ”2 o
71800 1 10 100
.1
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Bode Diagram

4. Complex conjugate poles (or zeros)
(1+(2Vwp)jo+{o/n,)?)

Transfer function
G(s) =

1
1+28/w, s+ (s/wn)2

Log gain
2010g|G(jw)| = -101og((1--2)* + 4(& £)*)
For w/w, « 1, |G(jw)| = 0

For w/w, » 1, |G(jw)| = -10 log (w/w,)*
= -40 log (w/w,,)
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Bode Diagram

4. Complex conjugate poles (or zeros)
(1+(2Vwp)jo+{o/n,)?)

Transfer function
G(s) =

1
1+28/w, s+ (s/(u,,)2

Log gain

= Phase
. o 285
£LG(jw) =—tan —
1-(2)
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UBC UBC .
S . S . G(s) =
Bode Diagram Bode Diagram  ““ " Tiagje, s+ tw,?
= 4. Complex conjugate poles (or zeros) My— R
1+ (ZC/(x)n)j(D+(j(l)/Q)n)2) ® N\ = 0o
10 o0
= Actually, the maximum value M, of the N
frequency response 0 7 Slope:
1 ° o 0304 04 q dB/dec
TN - L
occurs at the resonant frequency o = o,. .
o, =m,1-28°
74%1 02 03 04 0506 08 1.0 2 3 4 5 6 8 10
Note that for sketchlng ,w ~ (lnd, the damped frequency
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UBC | UBC
N . G(s) = N . .
Bode Diagram  ““ Tiagje, s+ a,y Sketching Bode Diagram

=005

==\
-20 0.10
\\\\\ 0.5
. —AO 5 0465% \\“/0:20

e R

0.1 02 03 04 0506 08 10 2 3 4

u = w/w, = Frequency ratio
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K H(l + jot,)
(jw)NH(l +j(m’m)H[1 +(2§, /0,)jo+(jo/o, )]

Generalized G(jw) =
So, we have
20log(G(w)) = 20log(K, ) + 202 log|1+ jor, |

-20N log(jw)-ZOE log|1+ jor, | —202 log|1+ (2§, /w, ) jo+(jo/w, Y

p(w) = Etan“(wr) N(90") - Ztan"(wrk) Zta » §k w 2
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UBC UBC
Example: Sketching Bode Example: Sketching Bode
4 different components: /}4 . o
o ~ 5(1+0.Ts) . o
- Constantgain & O = 15 055)(1+0.65/50+ 571 2500) = Gain N I o
2. Poles (zeros) at origin (j w); Gain K W £ ® N
3. Poles (zeros) on the real axis Pole at origin 2 3\5 o
(_](D T +1), Poleat w =2 02 . 10 50 100
4. Complex conjugate poles Zero at =10 "
(zeros) Complex poles at =50 10
20 @ 0 i~ —40 dB/dec
0 \
% @ dB . N~ \‘/ Exact curve
© 0 ©) @ Approximate curve - N
¥ -30
2 ®
-10 —40
0 -50
EECE 360, v241 02 T 10 0 100 o EECE 360, v2.4 o . 0 %
UBC UBC
Example: Sketching Bode Non-Minimum Phase System
= Phase = A transfer function is called minimum phase if all
its zeros lie in the left-hand plane.
0 S+2
G(s)= ,2>0
iz Zeroatw = 10 (S) s+p pZ>
. i Comple poles » Itis called non-minimum phase if it has any zeros
o et | in the right-hand plane.
¢ =90
_120 Pole at origin \ G(S) _ A p,z S 0
~150 s+p
. Apposimte () = Recall that the frequency response only exists for
240 stable systems (poles in LHP)
72700.1 02 1.0 20 10 100
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Non-Minimum Phase System

180°

Summary

= Same magnitude,
different phase

Nonminimum phase
90°
Minimum
phase

0°

§—=2

G(s)=-%, pz>0 G(s)=""%, pz>0
s+ p S+ p

’ / \M\“;

P z 0 I
Gy(s) : Gols)
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= Response of linear system to sinusoidal
input is sine wave of different
magnitude and phase

= Bode diagram

= Bode plots of common components

= Sketching the Bode diagram

= Minimum phase vs Non-minimum phase
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