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= Review
» Controllability test
= Ackermann’s formula for controller design

= Today

= Observability
= Observerability test
= Observer design through Ackermann’s

= Separation principle
= Combining observers and controllers
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Review: Controllability

= The eigenvalues of (A-BK) can be arbitrarily assigned
when the system [A,B,C,D] is controllable.

= A system is controllable if there exists a control u(t)
that can transfer any initial state x(0) to any desired
state x(t) in a finite time T.

= The controllability matrix
S.=[B AB A’B --- A"'B]

must have rank n for the system [A,B,C,D] to be
controllable. (S is “full-rank”.)

= When S.is full-rank, det(S5,)+#0
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Review: Ackermann’s Formula

= The state feedback gain matrix

K =[k, k, - k] whereu(t)=r(t)-Kx(1)

that produces the desired characteristic equation

isgvenby  g(s)=s"+a,s"" ++a

n

where

K=[0 0 - 1]S'q(4)

S=[B 4B - A"'B] and ¢(A)= A"+ A" +-+a,l
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Output feedback

= Often, it is not feasible or even possible to
measure all components of the state directly

= The output encapsulates a subset of the
states which can be measured.

= For example, in the spring-mass-damper
system, only the position of the mass is
measured

= In this case, the remaining states must be
accurately estimated using an observer
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Output feedback

= Output-based regulation
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Output feedback

= Since the control law acts upon the estimated
value of the state

u=-Kx
= The observer must be designed such that the
estimate of the state is guaranteed to
converge to the actual value of the state
e=x-Xx
= The estimate is a dynamic process which
evolves over time according to

e=xX—-X
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Output feedback

We know that x = Ax + Bu

y=Cx
= And so we create an estimated system

X=AXx+Bu+ L(y-Cx)

= Which is dependent on the difference between the
actual output and the output value expected based
on the current estimate of the state

= Therefore the error e evolves according to
é¢=Xx-Xx=Ax-Ax+ L(Cx -Cx)
=(A-LC)e
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Observability Observability

= The eigenvalues of (A-LC) can be arbitrarily assigned = The eigenvalues of (A-LC) can be arbitrarily
when the system is observable. assigned when the system [A,B,C,D] is observable.
= A system is observable if there exists a finite time T = A system is observable if there exists a finite time T
such that, given the input u(t), the initial state x(0) such that, given the input u(t), the initial state x(0)
can be determined from the observation history y(t). can be determined from the observation history y(t).
= The observability matrix [ C ]
e(T) CA
S, =| CA®
_CAn_l.
e(0) must have rank n for the system [A,B,C,D] to be

observable. (S, is “full-rank”.)
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Observability vs. Controllability Example: Spring-Mass-Damper

= Note that the observer gain L is a matrix of = System and input matrices Jz
dimension n x p, where the output matrix Cis px n 0 1 Wall 2
= For a SISO system, Lisnx 1 Aol & b|, c-[1 o] ic;?.on;
= Therefore LC will be an n x n matrix that can be M M L
subtracted, element-wise, from A. M
= Observability matrix 1 l
= By contrast, recall that the controller gain Kis a 10 e
matrix of dimension m x n, where the input matrix B 0=
ismxn 0 1

= For a SISO system, Kis 1 x n

= Therefore BK will be an n x n matrix that can be To test for Contm”ab'“_tyl |Sp|=1-0=1
subtracted, element-wise, from A. = Therefore the system is observable.
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Example: Spring-Mass-Damper

= The open-loop observer poles are é
located where wall =,
O_ 2 frictiong
=5 + ﬁs + M b zr
= With the observer gain L, the closed- M
loop poles are located where 1 l
v(t) u(r)

O=s+(L+0)s+(Lh+E+1)

= Because the system is observable, the
poles of the closed-loop error dynamics
can be placed anywhere in the complex
plane.
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&/ Observability vs. Controllability
= Controller: “duality”
= Regulate x -> 0 by choosing K such that
x=(A-BK)x
is stable.

= Controllability matrix Sc=[B AB A?B ... A™1B]

= Observer:
= Regulate e -> 0 by choosing L such that
e=(A-LC)e
is stable.

= Controllability matrix Sy=[C; CA; CA?; ...; CA™1]
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W% QObservability vs. Controllability

= Controller:

= Design a control gain K =[k; k, k; ... k,] through
Ackermann’s formula

K=[0 ... 0 1]5."'q(A)

= Observer:

= Design an observer gain L = [I, I, |5 ... |,] T through
Ackermann’s formula

L=gs,'[0 ... 0 1]

= This takes advantage of the duality between the observer
and controller
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W% QObserver design: Ackermann’s

Example: Consider the spring-mass-damper system

= Choose the closed-loop poles of the observer to be 4-10 times
faster than the controller poles

= For now, assume that these poles occur at a desired damping ¢
and desired natural frequency w,, the characteristic equation is

q(s)= s+ 255n3+ Enz

= Compute the observability matrix and its inverse

clto
So=| . |=

cal |0 1
L
> o 1
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Ackermann’s Formula

Ackermann’s Formula

= The observer gain to achieved the desired closed-
loop poles for the error dynamics is

|

= The characteristic equation in terms of A is
q(A)=A*+2C w,A+ 5,,2, therefore the control gain is
_ 0 1 -+ - 0
L=(A’+28@,A+®, ) [o 1] L=|, ".|+28®,| ,|+®,
10 Ly 2 -k 1
0 *_ o 0 1]fo 2°o, -
8N P A P L Bk
i —l 4 =4l ofln @, 28, -+ b
| o |, Fo O L] ol 010 = Note that the observer gain will drive the error
L -t - -L 10 1) 11 dynamics to the desired closed-loop error dynamics
poles.
_% = 2 0
= . »|+28w,| , |+,
-+ o - 1
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Ackermann’s Formula Using Matlab
= The closed-loop system is = Designing controller gains
¢=(A-LC)e B s K=[0 0 1]5."'g(A)
0 1 2w, -1
=l . b]‘ —2 —C_wh Yoo o] = K = acker(A,B,Pk)
=i Tl @0 =280, 5 =t Use ‘place’ for
0 . F b 0 o _ MIMO systems
_ - s | = Designing observer gains
il (A AT - '
\ M » L=g(A)S, [0 0 1]
Ofw +2 1 _ 1~
_ 25(1)1+ Mb b ) ]x s LT = acker(A ,C ,Pl) ** Note that the
@, +( Lo, ‘V)W v «L=LT transpose of both
A and C required!
20

= which has poles at 0=|s-(A-LC)|=s2+2Cw,S+w,?
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Controllability Summary

Observability Summary

= A system (A,B,C,D) is controllable if its = A system (A,B,C,D) is observable if its
controllability matrix S is full rank. observability matrix Sy is full rank.
= The closed-loop poles of the error dynamics of an
= The closed-loop poles of a controllable system observable system can be placed anywhere in the
can be placed anywhere in the complex plane. complex plane.
= This allows arbitrarily fast convergence of the
= Choose the desired pole location, then compute state estimate to the actual value of the state.
the gain K required to achieve those locations
= Ackermann’s formula for SISO systems (Matlab’s = Choose the desired error pole location, then
‘acker”) compute the gain L required to achieve those
= Matlab’s ‘place’ for MIMO systems locations

= Ackermann’s formula for SISO systems (Matlab’s
‘acker”) with transposed matrices
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Observers/controllers Observers/controllers

= The dynamics for dx/dt and de/dt are = In state-space form, with
coupled R
= State dynamics e
x=Ax+Bu, u=-K(x+e)

= The closed-loop system and observer
= (A= BK)x + BKe dynamics are

A-BK BK
1o A-LC

= Error dynamics
é=%-X, Xx=A%+Bu+L(y-CR)
=Ax+Bu-A(x+e)—Bu-LCx+ LC(x+¢e)
=(A-LC)e

X X

e e

= The eigenvalues of this system are
eig(A-BK) and eig(A-LC)
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Separation Principle ™

= Although the state dynamics and observer dynamics
are coupled, the controller and the observer can
be designed independently

» Standard procedure:

= Design a controller with gain K to place the roots of (A-BK)
at desired locations in the LHP.
= Design an observer with gain L to place the roots of (A-LC)
at desired locations in the LHP.
= Generally the observer poles are placed such that the
observer dynamics are 4-10 times faster than the
state dynamics.
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Example: Spring-Mass-Damper

= Using the controller and observer
designed previously wal

friction

b

= RANVNVVVM
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Example: Spring-Mass-Damper

= The open-loop system poles are located
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Example: Spring-Mass-Damper

where v
O=s"+—s5+—
M M

= With controller gain Kand observer gain
L, the closed-loop poles of the extended
system are located where

Wall
friction

b

= RANVVVVM

lm‘!l uml

0= (s2 +28w, s+ wnz)(sz +28w,s+ @2)
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= Because the system is controllable and
observable, the closed-loop poles of the
error dynamics and the system
dynamics can be placed arbitrarily.

= However, the further away the closed-
loop poles are placed from the open-
loop poles, the higher the control effort.

= Additionally, excessively high observer
gains can lead to amplification of noise
inherent to the output measurements.
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Wall
friction

b
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Summary

= Controllability matrix S to test whether it is
possible to put the poles of the closed-loop
state dynamics in any desired location

= Observability matrix S, to test whether it is
possible to put the poles of the closed-loop
error dynamics in any desired location

= Duality of controller (with gain K) and
observer (with gain L)

= Separation principle allows independent
design of the controller and observer
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