Resistor-Inductor-Capacitor (RLC) Circuits

Session 3e for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Module: Basic Electronics (AC Circuits and Impedance: two parts)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
 - 5 on-line sessions plus one lab
- Resonance and Filters
 - 5 on-line sessions plus one lab

Section 3:

AC, Inductors and Capacitors

• OBJECTIVES: This section introduces AC voltage / current and their effects on circuit components (resistors, inductors, transformers and capacitors). The concept of impedance and the use of the vector analogy for computations is also introduced.

Section 3 Schedule:

Session 3a	- 05/13	Sine Waves, Magnitude, Phase and Vectors (again)	Text 4.1 – 4.24
3a continued	-05/20	Complete 3a	
Session 3b	- 05/22	R-L Circuits (no class on 05/27)	Text 4.25 – 4.54
3b continued	-05/29	Complete 3b	
Session 3c	- 06/03	R-C Circuits	
			Text 4.55 – 4.76
Session 3d	-06/05	Series LC Circuits	
(lab - 06/08, S	at.)		Text 4.77 – 4.88
(lab - 06/10, N	(Ion.)		
Session 3e	- 06/12	Series RLC Circuits	
(Quiz 3 due 0	6/16)		Text 4.89 – 4.113
Session 3f	-06/17	Review (Discuss Quiz 3)	
3e continued	-06/17	Series RLC Circuits	
6/19/2002		Basic Electricity	

Session 3d (L-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances (R, X_{L} , X_{C}) in series add as vectors (Phasors).
- Impedances in parallel add as inverses
 - Adding Vectors
 - Separately add their horizontal and vertical components
 - Graphically: head-to-tail or parallelogram
 - Multiplying Vectors
 - Multiply their magnitudes (lengths)
 - Add their phases
 - Dividing Vectors
 - Divide their magnitudes (lengths)
 - Subtract their phases
- Ohm's and Kirchoff's laws still work with AC
- Inductive and capacitive reactances are both vertical and exactly 180° out of phase; They subtract!

Series RLC-Voltage

- AC voltages always add as vectors
- Current (ref. Phase) is the same in all series components
- Inductor E_L points up (leads current by 90°)
- Capacitor E_C points down (lags current by 90°)
- Add E_L and E_C (they subtract) to get E_X
 - $E_{\rm L} = 100 \angle 90^{\circ}$
 - $E_{\rm C} = 80 \angle -90^{\circ} = -80 \angle 90^{\circ}$
 - $E_x = -20 \angle 90^\circ = 20 \angle 90^\circ$ (inductive circuit)
- Now add the vectors E_R and E_X to get E_{APP}
 - $50 \angle 0^{\circ} + 20 \angle 90^{\circ}$
 - $54 \angle 21.8^{\circ} \{ \tan^{-1}(20/50) \}$

6/19/2002

Series RLC - Impedance

- Impedances in series add as vectors
- X_L and X_C are in opposite directions
 - Magnitudes subtract
 - $X = 90 \angle -90^{\circ}$ (Capacitive)
- $Z = X_R + X$
 - $-Z = 33 \swarrow 0^{\circ} + 90 \checkmark -90^{\circ}$
 - $|Z| = (33^2 + 90^2)^{\frac{1}{2}}$
 - $\angle Z = \tan^{-1}(-90/33) = \tan^{-1}(-2.72)$ $= -69.8^{\circ}$
 - $-Z = 96 \angle -69.8^{\circ}$

6/19/2002

Basic Electricity

XL

XC

Series LC: Current

- $I = E_{app} / Z$
- Top (inductive)

 $-Z = 100 \angle 0^{\circ} + 125 \angle 90^{\circ}$

• Bottom (capacitive)

 $-Z = 100 \angle 0^{\circ} + 125 \angle -90^{\circ}$

The Effect of Frequency

- $Z_L = 2\pi f L$ (rises linearly with frequency)
- $Z_{\rm C} = 1/2\pi f L$ (decreases with frequency)
- Resonance is when they are equal and cancel; the impedance is then just the resistance

Series RLC Example

- $X = (180 150) \angle 90^{\circ}$ = 30 \arrow 90^{\circ}
- $Z = 50 \angle 0^{\circ} + 30 \angle 90^{\circ}$
 - $|Z| = (33^2 + 90^2)^{\frac{1}{2}} = 58$
 - $\angle Z = \tan^{-1}(30/50) = \tan^{-1}(0.6) = 31^{\circ}$
- I = $110 \angle 0 / 58 \angle 31^{\circ}$ I = 1.9 amps at -31° or I = $1.9 \times \cos(2\pi ft - 0.541)$ (I'm assuming that E_{APP} is a peak voltage at zero phase)
- $E_L = 1.9 \angle -31^\circ * 180 \angle 90^\circ = 342$ volts at 90°
- $E_C = 1.9 \angle -31^\circ * 150 \angle -90^\circ = 285$ volts at -90°
- $E_R = 1.9 \angle -31^\circ * 50 \angle 0^\circ = 95$ volts at -31°

6/19/2002

RLC Series Resonance

- Resonance: X_L and X_C cancel leaving only a series R

RLC Series Resonance: Impedance

• At series resonance the magnitude of the impedance is a minimum

RLC Series Resonance: Current

The circuit resistance determines the height and flatness of the resonance curve

RLC Series Resonance: Q

RLC Series Resonance: Voltage Gain

6/19/2002

RLC Series Resonance: Band-Pass Filter

- The current is a maximum at resonance and falls off at frequencies above and below resonance
- The voltage across the resistor behaves the same. (Ohm's Law)
- This is therefore a Band-Pass filter – passes only energy at frequencies around resonance and reduces the energy of signals at other frequencies

Section 3 Schedule:

Session 3a	- 05/13	Sine Waves, Magnitude, Phase and Vectors (again)	Text 4.1 – 4.24
3a continued	-05/20	Complete 3a	
Session 3b	- 05/22	R-L Circuits (no class on 05/27)	Text 4.25 – 4.54
3b continued	-05/29	Complete 3b	
Session 3c	- 06/03	R-C Circuits	Text 4.55 – 4.76
Session 3d	- 06/05	Series LC Circuits	Text 4.77 – 4.88
(1ab - 06/08, S)	at.)		
Session 3e	-06/12	Series RLC Circuits	Text 4.89 – 4.113
(Quiz 3 due 0)6/16)		(Section 4: parallel
Session 3f	- 06/17	Review (Discuss Quiz 3)	RLC, resonance, filters - then MT2)
3e continued	- 06/19	Series RLC Circuits	,

Basic Electricity

6/19/2002

Section 4 Preliminary Schedule:

Session 4a	-06/24	Parallel L-R-C Circuits	Text 4.114 – 4.132
Session 4b (have a nice - Session 4c	- 06/26 July 4) - 07/08	Parallel L-R-C Circuits Cont. (no class on 05/27) Parallel Resonance	Text 4.133 – 4.146
Session 4d (break for a)	- 07/10 week)	Tuning and Filters	Text 4.147 – 4.151
Session 4e (Quiz 4 due 0 (lab - $07/27$, 5	- 07/22 07/28) Sat.)	Transformers and Impedance Matching	Text 4.152 – 4.160
Session 4f	- 07/29	Review (Discuss Quiz 4)	
	07/31	MT2 Review	
		MT2 – AC Circuits	