Transmission Lines

Part 12a of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Systems (in two parts)

Texts:

- "Computers," Capron, Benjamin Cummings, 1996, ISBN 0-10053-0662-5
- "Telecommunications," Blyth, McGraw-Hill, 1990, ISBN 0-02-61001041-2
- "Understanding Telephone Electronics," Bigelow, Newnes, 1997, ISBN 0-7506-9944

• References:

- <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
- Electronics Tutorial (Thanks to Mark Sokos)
- Part 9 Computers
 - 5 on-line sessions plus one lab
- Part 10 Digital Communications
 - 5 on-line sessions plus one lab
- Mastery Test part 5 follows this Module

Section 11: Broadcast Systems

- Frequency Division Multiplexing
- AM
 - Modulation
 - Demodulation (The Envelope Detector)
- FM
 - Modulation
 - Demodulation (The Phase-Locked-Loop)
- Super Heterodyne Receivers
- Television
- Sampling

Section 12: Transmission and Networks

- Transmission Lines
 - Twisted pair
 - Coaxial Cable
 - Optical Fiber
- Microwave Systems
- Satellite Links
- Telephone Systems
- Local Area Networks
- Cellular Phone Systems

Section 12 Schedule

Session 12a	09/24	Transmission Lines, Radio, Microwave & Satellites	Bigelow: 36-42; WWW, notes
Session 12b	09/29	POTS	Bigelow: 1-36, 47-78, WWW, notes
Session 12c (No Class 10/06)	10/01	Telephone Systems & the CO	Bigelow: 79-106, 211-251
Session 12d (No class 10/13)	10/08	LANs	WWW, notes
Session 12e	10/15	Cell Phone Systems	Bigelow: 332-341; WWW, notes
Session 12f (Lab - 10/25, Sat.) (Quiz 12 due 10/26)	10/20	Review for Quiz 12	
Session 12g	10/27	Quiz 12 Results	
Session 12h	10/29	MT 6 Q&A	
MT6 (Sat, Cheshire)	11/01	MT 6	
MT6 Results	11/03	MT 6 Results	

9/23/2003

Transmission Media: Get signals from here to there

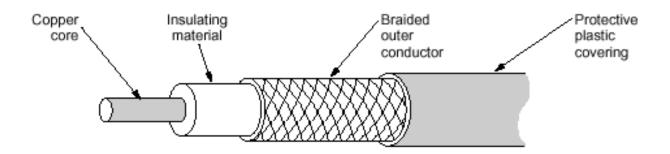
- Copper
 - Unbalanced, open wire line
 - Pair
 - Untwisted or Twisted
 - Unbalanced or Balanced
 - Coaxial cable
- Radio
 - Free Space: Antennas
 - Microwave:
 - Free Space
 - Wave Guides
 - Satellite
- Optical
 - Free Space
 - Fiber

A Transmission Line

- Signal goes in: voltage, current, characteristic impedance (Z_0)
- Signal propagates as an electromagnetic wave (speed of light)
- Signal comes out and is absorbed in the termination impedance
 - Attenuation (loss)
 - Reflection (impedance mismatch)

Open Wire Line

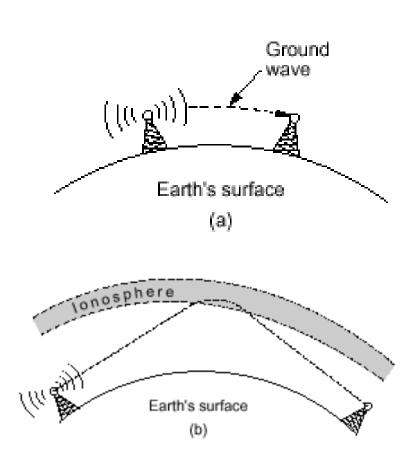
- Signal travels on a copper wire; Use "Ground" as a return
 - Good
 - Low cost
 - Bad
 - Susceptible to interference and "crosstalk"
 - Induced signals due to open "loop" structure
 - Common impedance in ground path
 - High loss in the ground return


Unbalanced Pair

- Add a copper return (neutral) wire
 - Good
 - Lower loss in the return path for the current
 - Independent return path
 - no common coupling impedance
 - Bad
 - Open structure still allows induced signals
 - Reduced by keeping signal and return lines close
 - Further reduced by twisting
 - Adds cost

Balanced Pair

- Put signal on one line and minus the signal on the other line
 - Good
 - Coupled signals tend to cancel each other out
 - "Common mode" rejection
 - Twisting very effective (Method used today)
 - Bad
 - Adds cost
 - Balance maintenance requires care
 - Audio transformers, center tapped
 - Differential operational amplifiers


Coaxial Cable

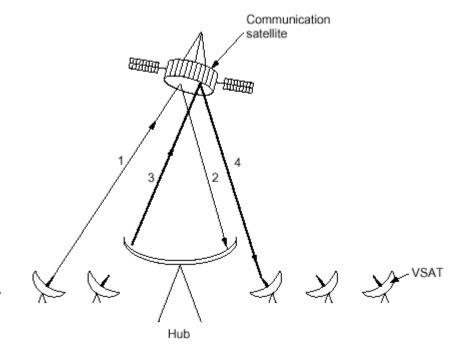
- Signal travels down the inner conductor and returns via the shield (outer conductor)
 - Good
 - Isolated from the rest of the world by the shield
 - Consistent impedance, large bandwidth (1 GHz)
 - Bad
 - Cost and connectors

Line of Sight Radio

- Radio waves tend to go in a straight line (especially at high frequencies)
- The earth (and other obstacles) can get in the way
- Signals can bounce off surfaces

Satellite

Uplink


Earth station

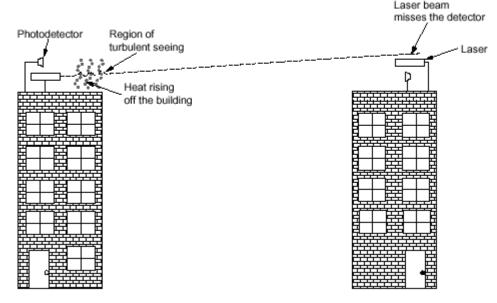
Downlink

- Satellite transmits a "footprint"
- Received by microwave "dish"

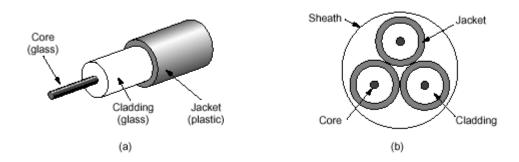
Geo-stationary

- 22,000 miles high
- Remains fixed over a spot on the equator.
- Allows a fixed receiving antenna

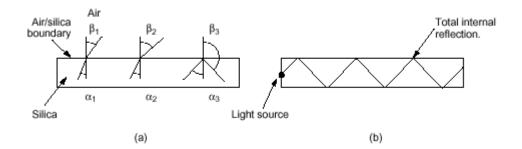
Satellite Systems


Band	Frequencies	Downlink (GHz)	Uplink (GHz)	Problems
С	4/6	3.7-4.2	5.925-6.425	Terrestrial interference
Ku	11/14	11.7–12.2	14.0–14.5	Rain
Ka	20/30	17.7–21.7	27.5–30.5	Rain; equipment cost

- Higher frequency shorter wavelength smaller dish
- Satellite TV uses high frequencies and a high power satellite transmitter to allow 18" receiving dish.


Free Space Optical

- Use lasers and photo-detectors
- Fog, rain, snow, and leaves can cause problems



Optical Fiber

- Light travel down a thin Glass Fiber
- What keeps it in?

hint: the speed of light is slower in high index glass

9/23/2003

16

Section 12 Schedule

Session 12a	09/24	Transmission Lines, Radio, Microwave & Satellites	Bigelow: 36-42; WWW, notes
Session 12b	09/29	POTS	Bigelow: 1-36, 47-78, WWW, notes
Session 12c (No Class 10/06)	10/01	Telephone Systems & the CO	Bigelow: 79-106, 211-251
Session 12d (No class 10/13)	10/08	LANs	WWW, notes
Session 12e	10/15	Cell Phone Systems	Bigelow: 332-341; WWW, notes
Session 12f (Lab - 10/25, Sat.) (Quiz 12 due 10/26)	10/20	Review for Quiz 12	
Session 12g	10/27	Quiz 12 Results	
Session 12h	10/29	MT 6 Q&A	
MT6 (Sat, Cheshire)	11/01	MT 6	
MT6 Results	11/03	MT 6 Results	

9/23/2003