Intro to Applied Technical Mathematics

Part 14a of
"Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Section 14 Schedule

Session 14a	$\mathbf{1 1 / 1 9}$	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	$11 / 24$	DC \& AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	$11 / 26$	Levers/gears, Torque/HP/RPM	
Quiz 14 Review (Quiz 14 due 12/07)	$12 / 01$		
Quiz 14 Results	$12 / 08$		
MT8 (Sat,Cheshire)	$\mathbf{1 2 / 1 3}$		
MT8 Results	$12 / 15$		

Section 14: Applied Technical Mathematics

- Math review
- Binary numbers (Hex and Octal)
- Powers of ten
- Working with equations
- DC \& AC Motors and Generators
- Simple relationships and vocabulary
- Levers and Gears
- Relating linear force and motion to rotational torque and motion
- $\mathrm{F}=\mathrm{M}^{*} \mathrm{~A}$ vs $\mathrm{T}=\mathrm{J} * \alpha$
- Torque, RPM and Horsepower
- Simple relationships and vocabulary

Solving Equations

- Test tube example (pp. 123-124)
- How many test tubes can be filled to 0.6 milliliters (ml) from a container which contains 60 ml .

$$
\begin{aligned}
& n * 0.6=60 \\
& \hline n * \frac{3}{5}=60 \\
& \hline n * \frac{3}{5} * \frac{5}{3}=60 * \frac{5}{3} \\
& \hline n=\frac{60^{*} 5}{3}=20 * 5=100 \\
& \hline
\end{aligned}
$$

Algebraic Order

- In mixed operations follow the algebraic order:
- Multiply/divide
- Add/subtract
- Alternately, use parenthesis to make things clear

$$
\frac{2}{3} * 24-11 \frac{1}{2}=16-11 \frac{1}{2}=15 \frac{2}{2}-11 \frac{1}{2}=4 \frac{1}{2}
$$

Number Systems

- Decimal Numbers (we have 10 fingers)
$-2705=2 * 10^{3}+7 * 10^{2}+0^{*} 10^{1}+5^{*} 10^{0}$
- Zero is a place holder (an Arab invention)
- Replaced Roman Numerals (MCMXVIII=1943)
- Binary Numbers
- Based on powers of 2 (the "base" or "radix")
$-1010=1^{*} 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}=10$ decimal
-k bits can count up to $2^{\mathrm{k}}-1$ (2^{k} values including zero)
- 8 -bits $\Rightarrow 256$ values, 16 -bits $\Rightarrow 65536$ values (64 k binary)
- 10 -bits $\Rightarrow 1024$ values (1 k binary)
- 20 -bits $\Rightarrow 1,048,576$ values (1 meg binary)
- Well suited for our 2-valued digital logic (computers)

Adding Binary Numbers

- Let's do an example:
$17=00010001$ (eight bits)
$11=00001011$
$28=00011100$ (watch out for "carries")
$16+8+4$
- Another example $17=00010001$
$-5=11111011$ (two's complement again)
$12=00001100$ (the "overflow" is ignored)

$$
8+4
$$

- Note that subtraction is done by adding the twos complement of the "subtrahend"

Octal and Hexadecimal

- Octal - 3 bits at a time
- 0 to 7 (eight possible values per digit)
-374 octal $=3 * 64+7 * 8+4 * 1=192+56+4=$ 252 decimal
011111100 binary $=$ $0 * 256+1 * 128+1 * 64+1 * 32+1 * 16+1 * 8+1 * 4+0 * 2+0 * 1$ $=252$ decimal
- Hexadecimal - 4 bits at a time
- 0 to 9 , A to F (16 possible values per digit)
-0 FC Hex $=0 * 256+15 * 16+12 * 1=240+12$ (0000 11111100 binary)
$=252$ decimal

Powers of 10, Scientific Notation

- $1.5372 * 10^{3}=1537.2$
- Multiplying by 1000
- Move the decimal point 3 spaces to the right
- 672.57* $10^{-3}=0.67257$
- Dividing by 1000
- Move the decimal point 3 spaces to the left

kilo (k)	10^{3}	milli (m)	10^{-3}
Mega (M)	10^{6}	micro (μ)	10^{-6}
Giga (G)	10^{9}	nano (n)	10^{-9}
		pico (ρ)	10^{-12}

Equations

- Term1 = Term2
- Add (or subtract) the same number to both sides
- Multiply (or divide) both sides by the same number (except zero)
- Square (or take the square root of) both sides
- Use the same function on both side (sine, arccos, $\log . .$.)
- $3 * y=6 * x+3$ and $x=2$
first divide both sides by 3

$$
y=2 * x+1
$$

now substitute for x

$$
y=2 * 2+1=5
$$

(you could have done this in the other order)

Again

- $3 * y=6^{*} x+3$ and $x=2$
first substitute for x
$3 * y=6^{*} 2+3$ or
$3 * y=15$
now divide both sides by 3

$$
y=5
$$

(the same answer)

Two Equations and Two Unknowns

- It turns out that you can add equations $2 \mathrm{x}+3 \mathrm{y}=7,3 \mathrm{x}-2 \mathrm{y}=4$ multiply the first equation by 2 and the second by 3
$4 x+6 y=14$
$9 x-6 y=12$ now add
$13 \mathrm{x}=26$ or $\mathrm{x}=2$
now substitute this value back into the first equation
$2 * 2+3 y=7$
$4+3 y=7$
$3 y=7-4=3$ or $y=1$
We'll do more examples later in this section

FOILing

- Multiplying two expressions
$(a+b) *(c+d)=a^{*} c+b^{*} c+a^{*} d+b^{*} d$
FOIL - First, Inner, Outer, Last
- $(\mathrm{x}+5) *(2 \mathrm{x}+2)=2 \mathrm{x}^{2}+10 \mathrm{x}+2 \mathrm{x}+10=$ $2 \mathrm{x}^{2}+12 \mathrm{x}+10$
- This is a second-order polynomial in powers of x
- It is non-linear (linear only has x^{1} and constant terms)
- Second order polynomials are called "quadradic"
$-(x+5)$ and $(2 x+2)$ are its "factors"
- Some people get good at "factoring" polynomials (also called unFOILing)

Section 14 Schedule

Session 14a	$11 / 19$	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	$\mathbf{1 1 / 2 4}$	DC \& AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	$11 / 26$	Levers/gears, Torque/HP/RPM	
Quiz 14 Review (Quiz 14 due 12/07)	$12 / 01$		
Quiz 14 Results	$12 / 08$		
MT8 (Sat, Cheshire)	$\mathbf{1 2 / 1 3}$		
MT8 Results	$12 / 15$		

