Intro to Applied Technical Mathematics

Part 14a of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Section 14 Schedule

Session 14a	11/19	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	11/24	DC & AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	11/26	Levers/gears, Torque/HP/RPM	
Quiz 14 Review (Quiz 14 due 12/07)	12/01		
Quiz 14 Results	12/08		
MT8 (Sat,Cheshire)	12/13		
MT8 Results	12/15		

Section 14: Applied Technical Mathematics

- Math review
 - Binary numbers (Hex and Octal)
 - Powers of ten
 - Working with equations
- DC & AC Motors and Generators
 - Simple relationships and vocabulary
- Levers and Gears
 - Relating linear force and motion to rotational torque and motion
 - $F=M*A vs T=J*\alpha$
- Torque, RPM and Horsepower
 - Simple relationships and vocabulary

Solving Equations

- Test tube example (pp. 123-124)
 - How many test tubes can be filled to 0.6
 milliliters (ml) from a container which contains
 60 ml

$$\begin{array}{r}
 n * 0.6 = 60 \\
 n * \frac{3}{5} = 60 \\
 \hline
 n * \frac{3}{5} * \frac{5}{3} = 60 * \frac{5}{3} \\
 \hline
 n = \frac{60*5}{3} = 20 * 5 = 100
 \end{array}$$

Algebraic Order

- In mixed operations follow the algebraic order:
 - Multiply/divide
 - Add/subtract
- Alternately, use parenthesis to make things clear

$$\frac{2}{3} * 24 - 11\frac{1}{2} = 16 - 11\frac{1}{2} = 15\frac{2}{2} - 11\frac{1}{2} = 4\frac{1}{2}$$

Number Systems

- Decimal Numbers (we have 10 fingers)
 - $-2705 = 2*10^3 + 7*10^2 + 0*10^1 + 5*10^0$
 - Zero is a place holder (an Arab invention)
 - Replaced Roman Numerals (MCMXVIII=1943)
- Binary Numbers
 - Based on powers of 2 (the "base" or "radix")
 - $-1010 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10$ decimal
 - k bits can count up to $2^k 1$ (2^k values including zero)
 - 8-bits ⇒ 256 values, 16-bits ⇒ 65536 values (64k binary)
 - 10-bits \Rightarrow 1024 values (1k binary)
 - 20-bits ⇒ 1,048,576 values (1 meg binary)
 - Well suited for our 2-valued digital logic (computers)

Adding Binary Numbers

- Let's do an example:
 - 17 = 00010001 (eight bits)
 - 11 = 00001011
 - 28 = 00011100 (watch out for "carries")

$$16 + 8 + 4$$

- Another example
 - 17 = 00010001
 - -5 = 11111011 (two's complement again)
 - $12 = 00001100 \text{ (the "overflow" is ignored)} \\ 8+4$
- Note that subtraction is done by adding the twos complement of the "subtrahend"

Octal and Hexadecimal

- Octal 3 bits at a time
 - 0 to 7 (eight possible values per digit)
 - 374 octal = 3*64+7*8+4*1 = 192+56+4 = 252 decimal 011 111 100 binary = 0*256+1*128+1*64+1*32+1*16+1*8+1*4+0*2+0*1 = 252 decimal
- Hexadecimal 4 bits at a time
 - 0 to 9, A to F (16 possible values per digit)
 - 0FC Hex = 0*256+15*16+12*1 = 240+12 (0000 1111 1100 binary)
 - = 252 decimal

Powers of 10, Scientific Notation

- $1.5372*10^3 = 1537.2$
 - Multiplying by 1000
 - Move the decimal point 3 spaces to the right
- $672.57*10^{-3} = 0.67257$
 - Dividing by 1000
 - Move the decimal point 3 spaces to the left

kilo (k)	10 ³	milli (m)	10-3
Mega (M)	106	micro (µ)	10-6
Giga (G)	109	nano (n)	10-9
		pico (p)	10-12

Equations

- Term1 = Term2
 - Add (or subtract) the same number to both sides
 - Multiply (or divide) both sides by the same number (except zero)
 - Square (or take the square root of) both sides
 - Use the same function on both side (sine, arccos, log ...)
- 3*y = 6*x + 3 and x = 2first divide both sides by 3 y = 2*x + 1now substitute for x

y = 2*2 + 1 = 5

(you could have done this in the other order)

Again

•
$$3*y = 6*x + 3$$
 and $x = 2$
first substitute for x
 $3*y = 6*2 + 3$ or
 $3*y = 15$
now divide both sides by 3
 $y = 5$
(the same answer)

Two Equations and Two Unknowns

• It turns out that you can add equations 2x + 3y = 7, 3x - 2y = 4multiply the first equation by 2 and the second by 3 4x + 6y = 149x - 6y = 12 now add13x = 26 or x = 2now substitute this value back into the first equation 2*2 + 3y = 74 + 3y = 73y = 7 - 4 = 3 or y = 1We'll do more examples later in this section

FOILing

- Multiplying two expressions

 (a+b)*(c+d) = a*c + b*c + a*d + b*d
 FOIL First, Inner, Outer, Last
- $(x+5)*(2x+2) = 2x^2+10x+2x+10 = 2x^2+12x+10$
- This is a second-order polynomial in powers of x
 - It is non-linear (linear only has x^1 and constant terms)
 - Second order polynomials are called "quadradic"
 - -(x+5) and (2x+2) are its "factors"
- Some people get good at "factoring" polynomials (also called unFOILing)

Section 14 Schedule

Session 14a	11/19	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	11/24	DC & AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	11/26	Levers/gears, Torque/HP/RPM	
Quiz 14 Review (Quiz 14 due 12/07)	12/01		
Quiz 14 Results	12/08		
MT8 (Sat, Cheshire)	12/13		
MT8 Results	12/15		