Diodes

Session 5b for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc

Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

Section 5: Semiconductors, Diodes and Bipolar Transistors

• **OBJECTIVES**: This section reviews semiconductors, doping and junctions. The characteristics and application of Diodes and Bipolar Transistors are then studied.

Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Kybett Chapter 2
Session 5c	- 09/30	Diode Applications	Kybett Chapter 11
Session 5d (lab - 10/05, S	- 10/02 Sat.)	Bipolar Transistors	Kybett pp 51 - 70
Session 5e (Quiz 4 due 1)	- 10/07 0/12)	Transistor Amplifiers	Kybett pp 173 - 201
Session 5f	- 10/14	Review (Discuss Quiz 4)	
Break to introduce Learnlinc version 6.1		About 2 weeks to set up the computers and retrain us	

Semiconductor Review

- Pure semiconductors (Si, Ge, GaAs) are crystals
 - Outer electrons are trapped in covalent bonds
 - High resistivity
- Doping
 - N-Type formed by diffusing group 5 impurities
 - P-Type formed by diffusing group 3 impurities
 - More impurities; Less resistivity
 - "Majority" carriers (electrons or holes) determines
 "Type" (equal carriers combine to cancel each other)
- PN junctions used to create electronic devices (diodes, transistors, etc.)

PN Junctions

- Diffusion creates junctions just below the surface
- A diode is formed as one PN junction
- A bi-polar transistor is two pn junctions separated by a very narrow "base" region

This is followed by another oxidation step and a metalization step (so that you can make contacts for the base, emitter, and collector)

Point Contact diodes

- First diodes formed by probing a mineral (Galena) with a stiff wire.
- Used as detectors in early radios (Crystal Sets)

Junction Diode Operation

- PN junction forms at the PN boundary
- Holes (P) and free electrons (N) combine
- "Depletion" Region forms (no free carriers)
- Forward "bias"; allows current
 - positive voltage on P
 - negative voltage on N
- Reverse "bias"; no current
 - positive voltage on N
 - negative voltage on P

Diode Characteristics

- Diodes act as imperfect one-way valves
- Forward Voltage Drop
 - Silicon: about 0.7 volts
 - Germanium: about 0.3 volts
 - "Schotky": less than 0.1 volt
- Reverse "Leakage" Current (µA)
- Breakdown (Zener) Voltage
- P-region is the "Anode"; N-region is the "Cathode"
 - The line on a diode marks the cathode
 - The arrow on the schematic symbol points in the direction of allowed current flow

в

Note - the line on the diode matches the line on its schematic symbol.

Current flows from A to B but not from B to A.

A Diode Circuit

- What is the "loop" current?
- The resistor voltage is: $V_r = 3 - 0.7 = 2.3$ volts
- Using Ohm's Law $I_r = 2.3 / 1000 = 2.3 \text{ mA}$ which is also the loop current

Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Text Chapter 2
Session 5c	- 09/30	Diode Applications	Text Chapter 11
Session 5d (lab - 10/05, S	- 10/02 Sat.)	Bipolar Transistors	Text pp 51 - 70
Session 5e (Quiz 4 due 1)	- 10/07 0/12)	Transistor Amplifiers	Text pp 173 - 201
Session 5f	- 10/14	Review (Discuss Quiz 4)	
Break to introduce Learnlinc version 6.1		About 2 weeks to set up the computers and retrain us	