Diode Applications

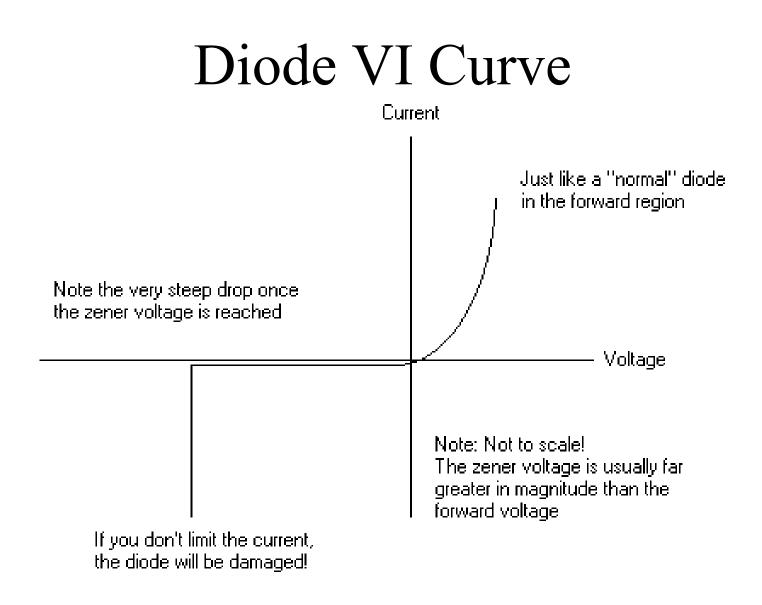
Session 5c for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

Section 5: Semiconductors, Diodes and Bipolar Transistors

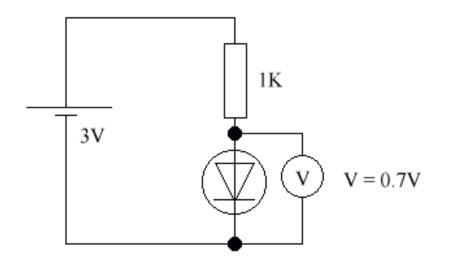
• **OBJECTIVES**: This section reviews semiconductors, doping and junctions. The characteristics and application of Diodes and Bipolar Transistors are then studied.

Section 5 Schedule:


Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Kybett Chapter 2
Session 5c	- 09/30	Diode Applications	Kybett Chapter 11
Session 5d (lab - 10/05, S		Bipolar Transistors	Kybett pp 51 - 70
Session 5e (Quiz 4 due 1	- 10/07	Transistor Amplifiers	Kybett pp 173 - 201
Session 5f	-10/14	Review (Discuss Quiz 4)	
Break to introduce Learnlinc version 6.1		About 2 weeks to set up the computers and retrain us	

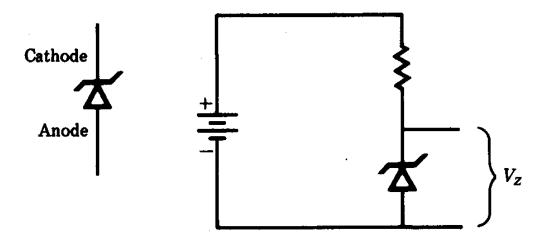
Diode Review

- Diodes are electronic one-way valves
 - Current can flow from anode to cathode
 - Current is blocked in the reverse direction
- Forward voltage drop
 - Silicon $V_f = 0.7$ volts
 - Germanium $V_f = 0.3$ volts
 - Schottky $V_f = 0.1$ volts
 - GaAs $V_f = 2$ volts
- Peak Inverse Voltage (PIV, PRV, Zener)
- These are non-linear devices (no superposition)


Current flows from A to B but not from B to A.

В

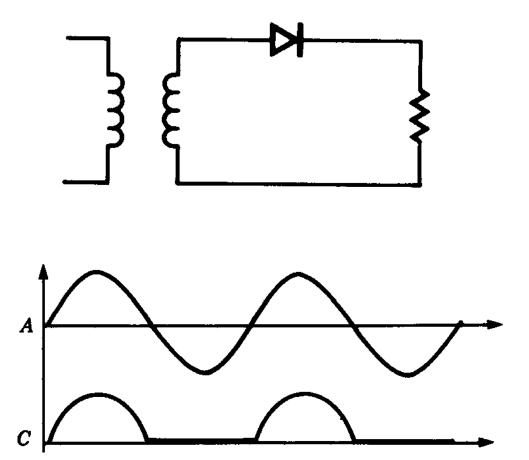
A Diode Circuit


- What is the "loop" current?
- The resistor voltage is: $V_r = 3 - 0.7 = 2.3$ volts
- Using Ohm's Law $I_r = 2.3 / 1000 = 2.3 \text{ mA}$ which is also the loop current

Zener Diode Application (Shunt Voltage Regulator)

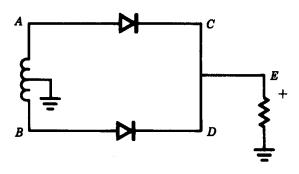
Kybett pp 42-47 (Problems 26-47)

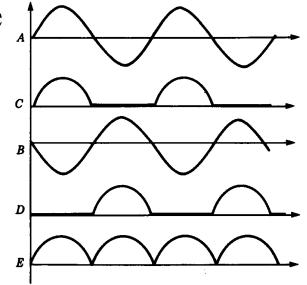
26. Zener diodes operate in reverse breakdown. Series resistor limits the current to a safe level. $I_R = (V_S - V_Z) / R$



Zener (continued)

- 27. Determine resistor to maintain voltage/current for light at specifications
- 28. If the source voltage drops; the light dims
- 29 30. Put a 20v zener across the bulb and redesign resistor for the worst case (35v source)
- 31. At 50v the bulb remains at 20v; the zener now conducts the excess current and the bulb remains at specifications
- 32 34. Determine maximum power dissipation for the zener diode and the resistor (avoid burn out at 50v).


Half Wave Rectifier


- Current flows during the positive half of the AC sine wave
- Current is blocked during the negative half of the AC sine wave
- The pulse output waveform has a non-zero average value (a DC component)

Full Wave Rectifiers

- Center tapped transformer produces two AC sine waves, 180° apart
- The diodes produce positive pulse waveforms during opposite halves of the input sine wave
- They add in the load. The time between peaks is half that of the half-wave rectifier (more efficient producer of DC)

"Bridge" Rectifiers

- Another form of full-wave rectifier
- Doesn't require a centertapped transformer
- Transformer secondary now "floats" at ½ the DC output voltage (assuming that the load is connected to ground)

DC Power Supply

- Now the diode conducts to charge the capacitor to "peak" AC voltage.
- The capacitor discharges between peaks of the source pulses
- Result: an average (DC) of about 80% of the AC peak and a small "saw tooth" AC ripple voltage.
- A full-wave rectifier produces smaller ripple (less time between pulses)

Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Text Chapter 2
Session 5c	- 09/30	Diode Applications	Text Chapter 11
Session 5d	- 10/02	Bipolar Transistors	Text pp 51 - 70
(lab - 10/05, S Session 5e (Quiz 4 due 1 Session 5f	- 10/07 0/12)	Transistor Amplifiers Review (Discuss Quiz 4)	Text pp 173 - 201
Session 5e (Quiz 4 due 1	- 10/07 0/12) - 10/14 duce		Text pp 173 - 201