Semiconductor Electronics Q & A

Session 6e for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc

Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- 5 Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- 6 FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

Section 6: FETs, SCRs, Other Devices and Operational Amplifiers

• OBJECTIVES: This section reviews additional important semiconductor devices and their applications. The Operational Amplifier is also studied.

Section 6 Schedule:

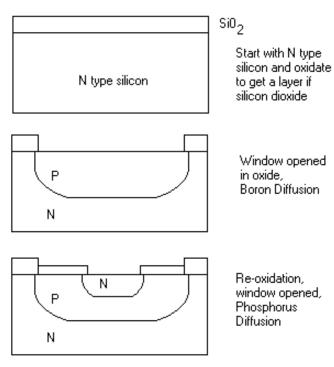
Session 6a	01/15	Field Effect Transistors	Kybett	pp 70 – 77, pp 201-209
Session 6b	01/20	Transistors as a switch	Kybett	pp 78 –107
Session 6c	01/22	SCR's, Triacs and UJTs	Notes	
Session 6d	01/27	Class A, B, and C Amplifiers	Notes	
Session 6e (no class Monday)	01/29	Q & A		
Session 6f (Lab - 02/08, Sat.)	02/05	Operational Amplifiers	Kybett	pp 209-215
Session 6g (Quiz 6 due 02/23)	02/10	Review for Quiz 6 (no class 2/17 or 2/19)		
Session 6h	02/24	Discuss Quiz 6		
Session 6i	02/26	Review for MT3		
МТ3	03/01	MT3 Exam		
Session 6j	03/10	Discuss MT3		

Topics

- Semiconductors and Doping
- Diodes and Applications
- Bipolar Transistors
- Transistor Amplifiers
- Field Effect Transistors
- Transistors as a switch
- Other Devices
- Class A, B, and C amplifiers
- Operational Amplifiers

Part 5

Part 6


Electronics and Telecommunications

Semiconductor Review

- Pure semiconductors (Si, Ge, GaAs) are crystals
 - Elemental semiconductors are in group 4 of the periodic chart
 - Outer 4 electrons are trapped in covalent bonds
 - High resistivity when pure
- Doping
 - N-Type formed by diffusing group 5 impurities
 - P-Type formed by diffusing group 3 impurities
 - More impurities; Less resistivity
 - "Majority" carriers (electrons or holes) determines "Type" (equal carriers combine to cancel each other)
- PN junctions used to create electronic devices (diodes, transistors, etc.)

PN Junction Review

- Diffusion creates junctions just below the surface
- A diode is formed as one PN junction
 - Depletion region forms when reverse biased
- A bi-polar transistor is two pn junctions separated by a very narrow "base" region

This is followed by another oxidation step and a metalization step (so that you can make contacts for the base, emitter, and collector)

Diodes

- Diodes are electronic one-way valves
 - Current can flow from anode to cathode
 - Current is blocked in the reverse direction (depletion region)

Current flows from A to B but not from B to A.

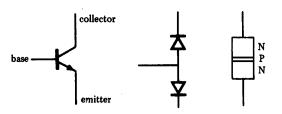
Forward voltage drop

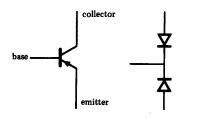
- Silicon
$$V_f = 0.7 \text{ volts}$$

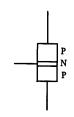
- Germanium
$$V_f = 0.3 \text{ volts}$$

- Schottky
$$V_f = 0.1 \text{ volts}$$

- GaAs (LED)
$$V_f = 2 \text{ volts}$$


- Peak Inverse Voltage (PIV, PRV, Zener)
- These are non-linear devices (no superposition)


Diode Analysis Review


- First determine if the diode is:
 - Forward biased: conducting with a small voltage drop
 - Reverse biased: an open switch
 - In reverse breakdown (PIV): conducting with a large voltage drop (The Zener voltage)
- Replace the diode with a simple equivalent and then analyze the circuit (Ohm and Kirchoff)
- Check power dissipation in each component to avoid overheating

Bipolar Transistor Review

- Transistors have three leads: base, emitter and collector
- Testing via ohm meter
 - Two diodes back to back: test each separately for impedance ratio
 - Check collector to emitter for high impedance (leakage)
- Beta (β): Current gain $\beta = I_C/I_B$, as long as no "saturation" ($V_{CE} > 0.2v$)
 - Transistor "action"
 - Carriers injected into "depletion region" (very thin base region)
- NPN and PNP: currents and voltages reversed
- Analyze Base current (I_B) flow as a diode
- Collector current: $I_C = I_B * \beta$
- Collector voltage: $V_C = V_{batt} I_C * R_C$

Transistor Review (2)

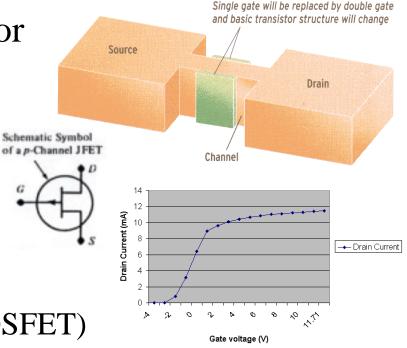
- Amplifier Configurations
 - Common Emitter (voltage gain)
 - Common Collector (buffer, low output impedance)
 - Common Base
 (only used in some high frequency applications)
- Non-Linear Operation
 - Saturation: Transistor is fully on $(V_{ce} = 0.2, low \beta)$
 - Cutoff: Transistor is off ($V_{be} < 0.5$, $I_c = 0$)

FET Summary

A voltage-controlled resistor

Channel material

N-channel FET


P-channel FET

- FET types
 - Junction FET (JFET)
 - Metal Oxide Gate FET (MOSFET)
 - Complementary Symmetry MOSFET (CMOS)

Schematic Symbol

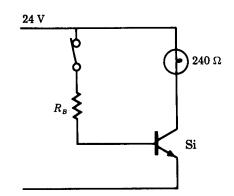
of an n-Channel JFET

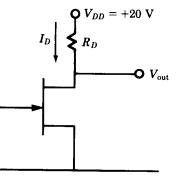
- Simple high input impedance amplifiers Gate
- Very effective as switches

Source (-ve)

Drain (+ve)

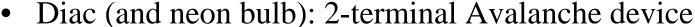
Transistor Switch Summary

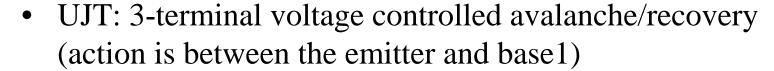

- Can be either Bipolar or FET
- They operate fully in saturation or cutoff
 - Cutoff: no current
 - Saturation: Vce < 0.2 v

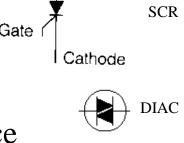


- NPN: +0.7 volt base-emitter ON
- PNP: -0.7 volt base-emitter ON

- N-Ch JFET: -5 volt gate-source OFF, 0 volt ON
- P-Ch JFET: +5 volt gate-source OFF, 0 volt ON
- MOSFET: 0 volt gate-source Off, 5 volt gate-source ON $v_{GG} = -5$
 - Positive for N-Ch, Negative for P-Ch




 $\sum R_G$


Other Devices

- SCR: Half wave current controlled triggered switch
 - 4 layers, normally off, triggered on
 - Reverse bias turns it off
- Triac: Full wave triggered switch
 - Effectively two SCR's in parallel (reverse polarity)

- Normally high impedance,
- Low impedance triggered by threshold voltage
- Reverse bias turns it off

Emitter

UJT

Triac

Anode

Neon

Amplifier Summary

Class	Duty Cycle	Efficiency	Application	Notes
A	100%	Low	Linear small signal	Transistor always on
B (AB)	50%	~ 50%	Linear power	Each transistor conducts half the time
C	< 50%	~ 80%	RF Power	Transistor conducts for short pulse; Resonant circuit produces sine wave
D	High speed switching	~ 85%	DC power supplies and Low frequency linear power	Not in Mastery Test

Op-Amp Summary

- Gain infinite (for all practical purposes)
 - $-A_f = -R_f/R_{in}$ using the inverting input and feedback
- Input impedance infinite
- Differential input
- Output impedance zero (short circuit protected)
- Bandwidth high
 - Slew Rate: sets bandwidth
- Voltage out zero (when voltages into each input are equal)

 $-R_L$

+15

 $R_{\rm in}$

 $10 k\Omega$

Section 6 Schedule:

Session 6a	01/15	Field Effect Transistors	Kybett	pp 70 – 77, pp 201-209
Session 6b	01/20	Transistors as a switch	Kybett	pp 78 –107
Session 6c	01/22	SCR's, Triacs and UJTs	Notes	
Session 6d	01/27	Class A, B, and C Amplifiers	Notes	
Session 6e (no class Monday)	01/29	Q & A		
Session 6f (Lab - 02/08, Sat.)	02/05	Operational Amplifiers	Kybett	pp 209-215
Session 6g (Quiz 6 due 02/23)	02/10	Review for Quiz 6 (no class 2/17 or 2/19)		
Session 6h	02/24	Discuss Quiz 6		
Session 6i	02/26	Review for MT3		
МТ3	03/01	MT3 Exam – 9 AM	Cheshire, 99 Realty Drive Tim Bunce – PSC Supervisor	
Session 6j	03/10	Discuss MT3		