# Review for MT4: Digital Electronics 

## Part 8h of <br> "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

## Module: Digital Electronics (in two parts)

- Text: "Digital Logic Tutorial ," Ken Bigelow, http://www.play-hookey.com/digital/
- References:
- "Electronics Tutorial", part 10 (Thanks to Alex Pounds) http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
- 7 - Digital Electronics 1
- 5 on-line sessions plus one lab and a quiz
- 8 - Digital Electronics 2
- 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module


## Section 7: Digital Electronics 1

- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops


## Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers \& Demultiplexers
- Sampling
- MT4


## Section 8 Schedule

| Session 8a | $04 / 02$ | Clocks and Counters | "Hookey": "Counter" pages <br> Alex Pounds: Part 27 |
| :--- | :--- | :--- | :--- |
| Session 8b | $04 / 09$ | Shift Registers | "Hookey": "Register" pages |
| Session 8c | $04 / 14$ | Decoders | "Hookey": Decoders and <br> Demultiplexers |
| Session 8d | $04 / 16$ | Multiplexers and <br> Demultiplexers | "Hookey": Multiplexers, <br> Decoders and Demultiplexers |
| Session 8e | $04 / 21$ | Sampling (A/D \& D/A) | Notes |
| Session 8f <br> (Quiz 8 due 04/27) | $04 / 23$ | Review for Quiz 8 |  |
| Session 8g | $04 / 28$ | Quiz Results |  |
| Session 8h <br> (Lab - 05/03, Sat.) | $\mathbf{0 4 / 3 0}$ | MT4 Q\&A |  |
| MT4 (Sat, Cheshire) | $05 / 10$ |  |  |
| MT4 Results | $05 / 12$ |  |  |

## Digital Electronics Topics

- Logic Gates and Boolean Algebra
- Truth Tables
- Binary Numbers
- Memory

Part 7

- Flip-Flops
- Clocks and Counters
- Shift Registers

Part 8

- Decoders
- Multiplexers \& Demultiplexers
- Sampling and Nyquist


## Logic Basics

- Binary: 1, 0; True, False; On, Off; High, Low; 5 volts, 0 volts
- Basic Logic Gates:
- AND: $\quad \mathrm{Q}=\mathrm{A} * \mathrm{~B}$ * C
( Q is only true if all inputs are true)
- OR: $\quad \mathrm{Q}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
( Q is only false if all inputs are false )
- NOT: $Z=X^{\prime}$
( Q is true if A is false, Q is false if A is true)
- Derived Logic Gates:
- NAND
( Q is only false if all inputs are true )
- NOR
( Q is only true if all inputs are false )
- XOR
( Q is true if one of A or B is true but not both )



## Truth Tables

- Truth Tables: Enumerate outputs for all input combinations
- Example: 5 people are voting for one of two candidates Let 0 represent Candidate A and 1 represent candidate B

| Voter1 | Voter2 | Voter3 | Winner |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | A |
| 0 | 0 | 1 | A |
| 0 | 1 | 0 | A |
| 0 | 1 | 1 | B |
| 1 | 0 | 0 | A |
| 1 | 0 | 1 | B |
| 1 | 1 | 0 | B |
| 1 | 1 | 1 | B |

## Boolean Algebra

- Named Variables
- Operators
- Expressions

| (T1) | $\mathrm{X}+0=\mathrm{X}$ | (T1) | $\mathrm{X} \cdot \mathrm{l}=\mathrm{X}$ | (Identities) |
| :--- | :--- | :--- | :--- | :--- |
| (T2) | $\mathrm{X}+1=1$ | (T2) | $\mathrm{X} \cdot 0=0$ | (Null elements) |
| (T3) | $\mathrm{X}+\mathrm{X}=\mathrm{X}$ | (T3) | $\mathrm{X} \cdot \mathrm{X}=\mathrm{X}$ | (Idempotency) |
| (T4) | $\left(\mathrm{X}^{\prime}=\mathrm{X}\right.$ |  |  | (Involution) |
| (T5) | $\mathrm{X}+\mathrm{X}^{\prime}=1$ | (T5) | $\mathrm{X} \cdot \mathrm{X}^{\prime}=0$ | (Complements) |

- Equations
- Rules

| (T6) | $X+Y=Y+X$ | (T6') | $X \cdot Y=Y \cdot X$ | (Commutativity) |
| :--- | :--- | :--- | :--- | :--- |
| (T7) | $(X+Y)+Z=X+(Y+Z)$ | (T7) | $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$ | (Associativity) |
| (T8) | $X \cdot Y+X \cdot Z=X \cdot(Y+Z)$ | (T8') | $(X+Y) \cdot(X+Z)=X+Y \cdot Z$ | (Distributivity) |
| (T9) | $X+X \cdot Y=X$ | (T9') | $X \cdot(X+Y)=X$ | (Covering) |
| (T10) | $X \cdot Y+X \cdot Y^{\prime}=X$ | (T10) | $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$ | (Combining) |
| (T11) | $X \cdot Y+X^{\prime} \cdot Z+Y \cdot Z=X \cdot Y+X^{\prime} \cdot Z$ |  |  | (Consensus) |
| (T11) | $(X+Y) \cdot\left(X^{\prime}+Z\right) \cdot(Y+Z)=(X+Y) \cdot\left(X^{\prime}+Z\right)$ |  |  |  |

## Binary Numbers:

- Based on powers of 2
$\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 1 & 1 & =64+32+8+4+1=109\end{array}$
1286432168421
-k bits can count up to $2^{\mathrm{k}}-1$ ( $2^{\mathrm{k}}$ values including zero)
- 8 -bits $\Rightarrow 256$ values, 16 -bits $\Rightarrow 65536$ values ( 64 k binary)
- 10-bits $\Rightarrow 1024$ values ( 1 k binary)
- 20 -bits $\Rightarrow 1,048,576$ values ( 1 meg binary)
- Bits, Nibbles (4), Bytes (8), and Words
- Negative Numbers: Two's complement
- Binary Adders: half and full

$$
\begin{aligned}
& 01101101=109 \\
&+00001011=\frac{11}{120} \\
& \hline 01111000
\end{aligned}
$$

## Storage

- The RS Latch (a "bit" of storage)
- $\operatorname{Set}=1: \quad \mathrm{Q}=1$
- Reset = 1: $\mathrm{Q}=0$
- Register (n-bits of storage)
- n latches (or flip-flops)
- Stores a word (or byte) of data

- RAM (addressable words of memory)
- Read / write
- Volatile (data lost if power lost)
- ROMs, PROMs, EPROMs and EEROMS
- Non-volatile memories


## Pulses and Clocks

- Single Pulse
- Signal normally low then high for a short time and goes back to low
- Clock
- Signal alternates high-low at a regular rate


Positive going edge

## Clocked Logic

- Clock signal "enables Set and Reset pins
- Synchronous Logic
- Slower than "ripple" logic

- Gates have input to output "delay"
- Delays build up as signals propagate through the logic - Predictable timing
- Clocked (synchronous) logic prevents the build up of delays


## The JK Flip-Flop

- Edge Triggered Generic Flip-Flop
- the triangle symbol
- triangle: rising edge triggers change
- Not then triangle: falling edge triggers change

J K $\quad \mathrm{Q}(\mathrm{t}+1)$

- Truth Table
- J and K determines state change
$\mathrm{Q}(\mathrm{t})$ - No change
$0 \quad$ - Reset
$1 \quad-$ Set
$\mathrm{Q}^{\prime}(\mathrm{t})$ - Complement


## The T Flip-Flop

- State toggles (flips) on each positive going clock edge

Triangle: edge triggered

| T | $\mathrm{Q}(\mathrm{t}+1)$ |
| :--- | :--- |
| 0 | $\mathrm{Q}(\mathrm{t})-$ No change |
| 1 | $\mathrm{Q}^{\prime}(\mathrm{t})-$ Complement |



## The D Flip-Flop

- Simple triggered storage Flip-Flop
- Note the half circle
- It is controlled by clock level, not an edge


D $\quad \mathrm{Q}(\mathrm{t}+1)$
$\begin{array}{ll}0 & 0-\text { Reset } \\ 1 & 1-\text { Set }\end{array}$

## Counter Review

- Clock: Sets system speed
- Bit Storage: Latch or Flip-Flop
- Register (n-bits of storage)
- Counters
- Ripple Counter
- Synchronous Counter
- Frequency Divider:

Counter Divides clock rate by an integer


## Shift Register Review

- Cascade chain of Flip-Flops
- Data marches down the line at the beat of the clock
- Parallel or serial load, Parallel or serial read
- Applications:
- Parallel to serial (serial transfer of data)
- Serial to parallel (serial reception of data)
- Feedback shift registers



## Decoder Review

- A small number of input bits; treated as a binary number
- A larger set of output bits (up to $2^{\text {n }}$ )
- The output bit values are "decoded"
 from the combination of the input bits
- Examples:
- 1 of N decoding
- Line Decoder
- Address Decoder
- Seven segment display decoder
- BCD to Decimal line decoder



## Mux and Demux Review

### 4.4 Multiplexer

- Multilexer - A data se/ector that selects one of may inputs to appear on a single output line
- Demultiplexer - A data distributorthat takes a single input line and routes it to one of several output lines


National Central University

## Analog to Digital Conversion



- Analog Signal: A continuous electrical signal
- Aliasing: Confusion of high and low frequencies if sampling is too slow (filter ensures Nyquist criterion; Nyquist rate $f_{s}>2 f_{\text {max }}$ to avoid aliasing)
- Sampling: The process of approximating an analog signal by a sequence of narrow pulses
- A/D: Representing the "strength" of a pulse by a binary number (introduces an error due to word length)


## Digital to Analog Conversion



- Digital Signal: A sequence of binary numbers representing an analog signal (approximate - digital "noise")
- PAM: Pulse Amplitude Modulation - A sequence of pulses with strengths corresponding to the analog signal
- Reconstruction Filter: Averaging out the pulse sequence to reproduce the original analog signal (almost identical to the "anti-aliasing filter")


## Analog to Digital Conversion

- Flash (or parallel)A/D
- Very fast
- Either low resolution (8-bits) or very expensive
- Successive approximation A/D
- Determines the MSB first
- Repeatedly refines the representation
- Accurate (high resolution) but slow
- Counting A/D: Uses a ramp signal and a high speed counter to determine the time that the ramp exceeds the signal value

- Over-Sampled (Sigma-Delta) A/D
- Flash encodes a low-resolution value at high speeds
- Uses a digital filter (anti-alias) to lower the bandwidth
- Allows reduction of the sampling rate
- Improves the resolution (number of bits)


## Digital to Analog Conversion



- Reverses the $\mathrm{A} / \mathrm{D}$ sequence
- D/A: generates a PAM pulse sequence where each pulse magnitude corresponds to the value of the corresponding digital number
- Reconstruction filter: Almost identical to the AntiAliasing filter used in A/D. Smoothes out the pulse sequence to reproduce the original signal.


## Applications

- North American Telephony ( $64 \mathrm{kbits} / \mathrm{sec}$ )
- Sampling rate $=8 \mathrm{kHz}\left(3 \mathrm{~dB}: 3.3 \mathrm{kHz}, \mathrm{f}_{\text {max }}: 3.8 \mathrm{kHz}\right.$ )
- $\mu 255$ (logarithmic), 8 -bit words ( 256 levels)
- CD Audio
- Sampling rate $=44.1 \mathrm{kHz}$ per channel ( $3 \mathrm{~dB}: 20 \mathrm{kHz}, \mathrm{f}_{\text {max }}: 21 \mathrm{kHz}$ ) (note: DAT $=48 \mathrm{kHz}-$ Prof Audio $=96 \mathrm{kHz}, 24 \mathrm{bit}$ )
- Linear 16-bit words
- PC sound card:
- Sampling rate $=8,16,11.025,22.05,44.1 \mathrm{kHz}$
- 8 or 16 bit word size


## Section 8 Schedule

| Session 8a | $04 / 02$ | Clocks and Counters | "Hookey": "Counter" pages <br> Alex Pounds: Part 27 |
| :--- | :--- | :--- | :--- |
| Session 8b | $04 / 09$ | Shift Registers | "Hookey": "Register" pages |
| Session 8c | $04 / 14$ | Decoders | "Hookey": Decoders and <br> Demultiplexers |
| Session 8d | $04 / 16$ | Multiplexers and <br> Demultiplexers | "Hookey": Multiplexers, <br> Decoders and Demultiplexers |
| Session 8e | $04 / 21$ | Sampling (A/D \& D/A) | Notes |
| Session 8f <br> (Quiz 8 due 04/27) | $04 / 23$ | Review for Quiz 8 |  |
| Session 8g | $04 / 28$ | Quiz Results |  |
| Session 8h <br> (Lab - 05/03, Sat.) | $04 / 30$ | MT4 Q\&A |  |
| MT4 (Sat,Cheshire) | $\mathbf{0 5 / 1 0}$ |  |  |
| MT4 Results | $05 / 12$ |  |  |

