Review for MT4: Digital Electronics

Part 8h of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Electronics (in two parts)

- Text: "<u>Digital Logic Tutorial</u>," <u>Ken Bigelow</u>, <u>http://www.play-hookey.com/digital/</u>
- References:
 - "<u>Electronics Tutorial</u>", part 10 (Thanks to Alex Pounds) http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
 - 7 Digital Electronics 1
 - 5 on-line sessions plus one lab and a quiz
 - 8 Digital Electronics 2
 - 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module

Section 7: Digital Electronics 1

- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops

Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling
- MT4

Section 8 Schedule

Session 8a	04/02	Clocks and Counters	"Hookey": "Counter" pages Alex Pounds: Part 27
Session 8b	04/09	Shift Registers	"Hookey": "Register" pages
Session 8c	04/14	Decoders	"Hookey": Decoders and Demultiplexers
Session 8d	04/16	Multiplexers and Demultiplexers	"Hookey": Multiplexers, Decoders and Demultiplexers
Session 8e	04/21	Sampling (A/D & D/A)	Notes
Session 8f (Quiz 8 due 04/27)	04/23	Review for Quiz 8	
Session 8g	04/28	Quiz Results	
Session 8h (Lab - 05/03, Sat.)	04/30	MT4 Q&A	
MT4 (Sat, Cheshire)	05/10		
MT4 Results	05/12		

Digital Electronics Topics

Part 7

Part 8

- Logic Gates and Boolean Algebra
- Truth Tables
- Binary Numbers
- Memory
- Flip-Flops
- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling and Nyquist

Logic Basics

- Binary: 1, 0; True, False; On, Off; High, Low; 5 volts, 0 volts
- Basic Logic Gates:
 - AND: Q = A * B * C
 (Q is only true if all inputs are true)
 - OR: Q = A +B + C
 (Q is only false if all inputs are false)
 - NOT: Z = X'
 (Q is true if A is false, Q is false if A is true)
- Derived Logic Gates:
 - NAND
 - (Q is only false if all inputs are true)
 - NOR
 - (Q is only true if all inputs are false)
 - XOR
 - (Q is true if one of A or B is true but not both)

Truth Tables

- Truth Tables: Enumerate outputs for all input combinations
 - Example: 5 people are voting for one of two candidates
 Let 0 represent Candidate A and 1 represent candidate B

Voter1	Voter2	Voter3	Winner
0	0	0	А
0	0	1	А
0	1	0	А
0	1	1	В
1	0	0	А
1	0	1	В
1	1	0	В
1	1	1	В

Boolean Algebra

•	Named Variables			(T1) (T2)	X + 0 = X X + 1 = 1	(T1 (T2	1	$\mathbf{X} \cdot 1 = \mathbf{X}$		tities)
•	Operators			(T2) (T3)	X + X = X	(T3	1	$\mathbf{X} \cdot 0 = 0$ $\mathbf{X} \cdot \mathbf{X} = \mathbf{X}$		elements) npotency)
•	Expression	IS		(T4) (T5)	(X')' = X X + X' = 1	(T5	5	$\mathbf{X} \cdot \mathbf{X}' = 0$		lution) plements)
•	Equations									
•	Rules	(T6) (T7)	X + Y = Y + X $(X + Y) + Z = X$	(+ (Y + Z)		(T6') (T7')		$Y = Y \cdot X$ $Y) \cdot Z = X \cdot (Y \cdot Y)$	Z)	(Commutativity) (Associativity)
		(T8)	$X\cdot Y + X\cdot Z =$	$X \cdot (Y + Z)$		(T8')	(X +	(X + Z) =	$X + Y \cdot Z$	(Distributivity)
		(T9)	$X + X \cdot Y = X$			(T9')	X · ((X + Y) = X		(Covering)
		(T10)	$X \cdot Y + X \cdot Y' =$	X		(T10')	(X +	- Y) · (X + Y') =	X	(Combining)
		(T11)	$X\cdot Y + X'\cdot Z +$	$\cdot Y \cdot Z = X \cdot$	$Y + X' \cdot Z$					(Consensus)
		(T11')	$(X+Y)\cdot (X^{\prime}+$	Z) · (Y + Z)	$= (X + Y) \cdot (X' + Z)$	Z)				

Binary Numbers:

- Based on powers of 2
 0 1 1 0 1 1 0 1 = 64 + 32 + 8 + 4 + 1 = 109
 128 64 32 16 8 4 2 1
- k bits can count up to $2^k 1$ (2^k values including zero)
 - 8-bits ⇒ 256 values, 16-bits ⇒ 65536 values (64k binary)
 - 10-bits \Rightarrow 1024 values (1k binary)
 - 20-bits \Rightarrow 1,048,576 values (1 meg binary)
 - Bits, Nibbles (4), Bytes (8), and Words
 - Negative Numbers: Two's complement
 - Binary Adders: half and full $0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 = 109$ $+ \underbrace{0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1}_{0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0}_{0 = 120} = \underbrace{11}_{120}$

Storage

- The RS Latch (a "bit" of storage)

- Set = 1: Q=1
- Reset = 1: Q=0
- Register (n-bits of storage)
 - n latches (or flip-flops)
 - Stores a word (or byte) of data
- RAM (addressable words of memory)
 - Read / write
 - Volatile (data lost if power lost)
- ROMs, PROMs, EPROMs and EEROMS
 - Non-volatile memories

Pulses and Clocks

- Single Pulse
 - Signal normally low then high for a short time and goes back to low
- Clock
 - Signal alternates high-low at a regular rate

Clocked Logic

- Clock signal "enables Set and Reset pins
- Synchronous Logic
 - Slower than "ripple" logic

- Gates have input to output "delay"
- Delays build up as signals propagate through the logic
- Predictable timing
 - Clocked (synchronous) logic prevents the build up of delays

The JK Flip-Flop

- Edge Triggered Generic Flip-Flop - the triangle symbol • triangle: rising edge triggers change • Not then triangle: falling edge triggers change J Κ Q(t+1)• Truth Table 0 Q(t) - No change() – J and K 0 0 determines state 1 0
 - -Reset 1 - Set Q'(t) – Complement

change

1

1

Q

Q

The T Flip-Flop

 State toggles (flips) on each positive going clock edge

The D Flip-Flop

- Simple triggered storage Flip-Flop
 - Note the half circle
 - It is controlled by clock level, not an edge

D Q(t+1)
0 0 - Reset
1 1 - Set

Counter Review

- Clock: Sets system speed
- Bit Storage: Latch or Flip-Flop
- Register (n-bits of storage)
- Counters
 - Ripple Counter
 - Synchronous Counter
- Frequency Divider:

Counter Divides clock rate by an integer

Digital Electronics

Shift Register Review

- Cascade chain of Flip-Flops
- Data marches down the line at the beat of the clock
- Parallel or serial load, Parallel or serial read
- Applications:
 - Parallel to serial (serial transfer of data)
 - Serial to parallel (serial reception of data)
 - Feedback shift registers

Decoder Review

- A small number of input bits; treated as a binary number
- A larger set of output bits (up to 2ⁿ)
- The output bit values are "decoded" *E* from the combination of the input bits
- Examples:
 - 1 of N decoding
 - Line Decoder
 - Address Decoder
 - Seven segment display decoder
 - BCD to Decimal line decoder

Mux and Demux Review

4.4 Multiplexer

- Multilexer A data selector that selects one of may inputs to appear on a single output line
- Demultiplexer A *data distributor* that takes a single input line and routes it to one of several output lines

- Analog Signal: A continuous electrical signal
- Aliasing: Confusion of high and low frequencies if sampling is too slow (filter ensures Nyquist criterion; Nyquist rate $f_s > 2 f_{max}$ to avoid aliasing)
- **Sampling:** The process of approximating an analog signal by a sequence of narrow pulses
- A/D: Representing the "strength" of a pulse by a binary number (introduces an error due to word length) ^{4/30/2003} Digital Electronics

- **Digital Signal:** A sequence of binary numbers representing an analog signal (approximate digital "noise")
- **PAM:** Pulse Amplitude Modulation A sequence of pulses with strengths corresponding to the analog signal
- **Reconstruction Filter:** Averaging out the pulse sequence to reproduce the original analog signal (almost identical to the "anti-aliasing filter")

Analog to Digital Conversion

- Flash (or parallel)A/D
 - Very fast
 - Either low resolution (8-bits) or very expensive
- Successive approximation A/D
 - Determines the MSB first
 - Repeatedly refines the representation
 - Accurate (high resolution) but slow
- Counting A/D: Uses a ramp signal and a high speed counter to determine the time that the ramp exceeds the signal value

- Over-Sampled (Sigma-Delta) A/D
 - Flash encodes a low-resolution value at high speeds
 - Uses a digital filter (anti-alias) to lower the bandwidth
 - Allows reduction of the sampling rate
 - Improves the resolution (number of bits)

- Reverses the A/D sequence
- D/A: generates a PAM pulse sequence where each pulse magnitude corresponds to the value of the corresponding digital number
- Reconstruction filter: Almost identical to the Anti-Aliasing filter used in A/D. Smoothes out the pulse sequence to reproduce the original signal.

Applications

- North American Telephony (64 kbits/sec)
 - Sampling rate = 8 kHz (3 dB: 3.3 kHz, f_{max} : 3.8 kHz)
 - µ255 (logarithmic), 8-bit words (256 levels)
- CD Audio
 - Sampling rate = 44.1 kHz per channel (3 dB: 20 kHz, f_{max}: 21 kHz) (note: DAT = 48 kHz - Prof Audio = 96 kHz, 24 bit)
 - Linear 16-bit words
- PC sound card:
 - Sampling rate = 8, 16, 11.025, 22.05, 44.1 kHz
 - 8 or 16 bit word size

Section 8 Schedule

Session 8a	04/02	Clocks and Counters	"Hookey": "Counter" pages Alex Pounds: Part 27
Session 8b	04/09	Shift Registers	"Hookey": "Register" pages
Session 8c	04/14	Decoders	"Hookey": Decoders and Demultiplexers
Session 8d	04/16	Multiplexers and Demultiplexers	"Hookey": Multiplexers, Decoders and Demultiplexers
Session 8e	04/21	Sampling (A/D & D/A)	Notes
Session 8f (Quiz 8 due 04/27)	04/23	Review for Quiz 8	
Session 8g	04/28	Quiz Results	
Session 8h (Lab - 05/03, Sat.)	04/30	MT4 Q&A	
MT4 (Sat,Cheshire)	05/10		
MT4 Results	05/12		