Digital Design Lecture 8

Combinatorial Logic (Continued)

Binary Multiplier: 2-bit by 2-bit

		B_{1}	B_{0}
		A_{1}	A_{0}
		$A_{0} B_{1}$	$A_{0} B_{0}$
	$A_{1} B_{1}$	$A_{1} B_{0}$	
C_{3}	C_{2}	C_{1}	C_{0}

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

Binary Multiplier: 4-bit by 3-bit

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4-Bit Magnitude Comparator

Fig. 4-17 4-Bit Magnitude Comparator

3-to-8 Line Decoder

Fig. 4-18 3-to-8-Line Decoder

2-to-4 Line Decoder with Enable

E	A	B	D_{0}	D_{1}	D_{2}	D_{3}
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram
(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Building Large Decoders

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

Full Adder Via a Decoder

Fig. 4-21 Implementation of a Full Adder with a Decoder

Priority Encoder

Fig. 4-22 Maps for a Priority Encoder

Fig. 4-23 4-Input Priority Encoder

2-to-1 Line Multiplexer

(a) Logic diagram
(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

4-to-1 Line Multiplexer

s_{1}	s_{0}	Y
0	0	I_{0}
0	1	I_{1}
1	0	I_{2}
1	1	I_{3}

(b) Function table
(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

2-to-1 Line Multiplexer * 4

Fig, 4-26 Quadruple 2-to-1-Line Multiplexer

Boolean Functions Via a Multiplexer

x	y	z	F	
0	0	0	0	$F=z$
0	0	1	1	
0	1	0	1	$F=z^{\prime}$
0	1	1	0	
1	0	0	0	$F=0$
1	0	1	0	
1	1	0	1	$F=1$
1	1	1	1	

(a) Truth table

(b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

A 4-Input Function Via a Multiplexer

A	B	C	D	F		
0	0	0	0	0	$=D$	
0	0	0	1	1	$F=$	
0	0	1	0	0	$F=D$	
0	0	1	1	1		
0	1	0	0	1	$=D^{\prime}$	
0	1	0	1	0		
0	1	1	0	0	$F=0$	
0	1	1	1	0		
1	0	0	0	0	$F=0$	
1	0	0	1	0		
1	0	1	0	0	$F=D$	
1	0	1	1	1		
1	1	0	0	1	$F=1$	
1	1	0	1	1		
1	1	1	0	1	$F=1$	
1	1	1	1	1		

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Three State Buffers

Normal input $A \longrightarrow \begin{array}{r}\text { Output } Y=A \text { if } C=1 \\ \text { High-impedance if } C=0\end{array}$
Control input C

Fig. 4-29 Graphic Symbol for a Three-State Buffer

Multiplexer Via Three-State Gates

Fig. 4-30 Multiplexers with Three-State Gates

Three-State Gates

bufifl

notifl

bufif0

notif0

Fig. 4-31 Three-State Gates

A 2-to-1 Line Multiplexer Via

 Three-State Buffers

Fig. 4-32 2-to-1-Line Multiplexer with Three-State Buffers

Stimulus and Design Modules Interaction

Stimulus module

Design module

Fig. 4-33 Stimulus and Design Modules Interaction

