
Midterm Review

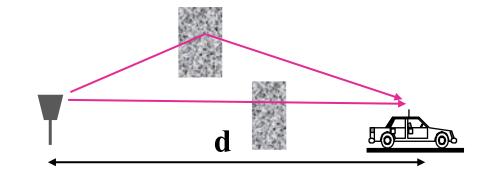
- Overview of Wireless Systems
- Signal Propagation and Channel Models
- Modulation and Performance Metrics
- Impact of Channel on Performance
- Fundamental Capacity Limits
- Diversity Techniques

Future Wireless Networks

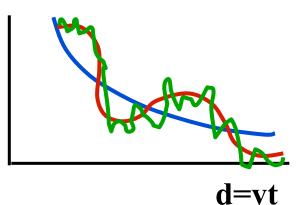
Ubiquitous Communication Among People and Devices

Design Challenges

- Wireless channels are a difficult and capacitylimited broadcast communications medium
- Traffic patterns, user locations, and network conditions are constantly changing
- Applications are heterogeneous with hard constraints that must be met by the network
- Energy, delay, and rate constraints change design principles across all layers of the protocol stack


Current Wireless Systems

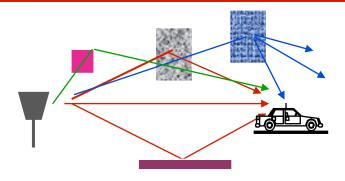
- Cellular Systems
- Wireless LANs
- Wimax
- Satellite Systems
- Paging Systems
- Bluetooth
- Zigbee radios


Signal Propagation

- Path Loss
 - Free space, 2-path,...
 - Simplified model

$$P_r = P_t K \left[\frac{d_0}{d}\right]^{\gamma}, \ 2 \le \gamma \le 8$$

- Shadowing
 - dB value is Gaussian
 - P_r/P_t Find path loss exponent and shadow STD by curve fitting
- Multipath
 - Ray tracing
 - Statistical model

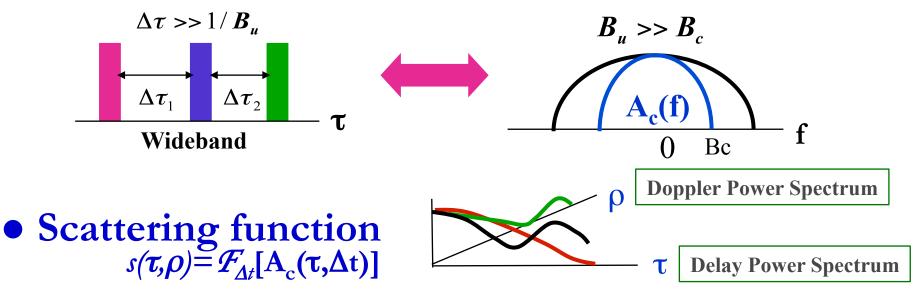

Outage Probability and Cell Coverage Area

- Path loss: circular cells
- Path loss+shadowing: amoeba cells
 - Tradeoff between coverage and interference
- Outage probability
 - Probability received power below given minimum

٢

- Cell coverage area
 - % of cell locations at desired power
 - Increases as shadowing variance decreases
 - Large % indicates interference to other cells

Statistical Multipath Model


- Random # of multipath components, each with varying amplitude, phase, doppler, and delay
- Leads to time-varying channel impulse response $\sum_{n=1}^{N}$

$$c(\tau,t) = \sum_{n=1}^{\infty} \alpha_n(t) e^{-j\varphi_n(t)} \delta(\tau - \tau_n(t))$$

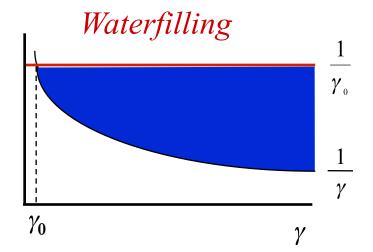
- Narrowband channel
 - No signal distortion, just a complex amplitude gain
 - Signal amplitude varies randomly (Rayleigh, Ricean, Nakagami).
 - 2nd order statistics (Bessel function), Average fade duration
 - Can also model amplitude variations via a Markov model

Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth

- Yields delay spread/coherence BW ($\sigma_{\tau} \sim 1/B_{c}$)
- Yields Doppler spread/coherence time $(B_d \sim 1/T_c)$

Capacity of Flat Fading Channels

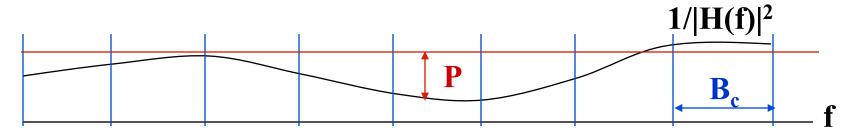

- Three cases
 - Fading statistics known
 - Fade value known at receiver
 - Fade value known at receiver and transmitter
- Optimal Adaptation with TX and RX CSI
 - Vary rate and power relative to channel
 - Goal is to optimize ergodic capacity

$$C = \max_{P(\gamma): E[P(\gamma)] = \overline{P}} \int_{0}^{\infty} B \log_2 \left(1 + \frac{\gamma P(\gamma)}{\overline{P}}\right) p(\gamma) d\gamma$$

Optimal Adaptive Scheme

• Power Adaptation

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma} & \gamma \ge \gamma_0\\ 0 & \text{else} \end{cases}$$

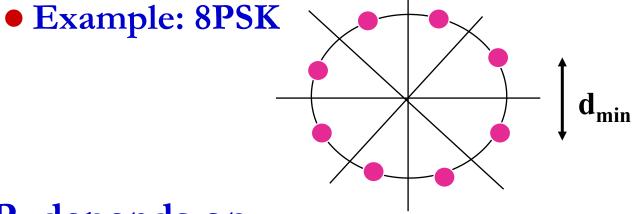

• Capacity

$$\frac{R}{B} = \int_{\gamma_0}^{\infty} \log_2\left(\frac{\gamma}{\gamma_0}\right) p(\gamma) d\gamma.$$

• Alternatively can use channel inversion (poor performance) or truncated channel inversion

Frequency Selective Fading Channels

- For time-invariant channels, capacity achieved by water-filling in frequency
- Capacity of time-varying channel unknown
- Approximate by dividing into subbands
 - Each subband has width B_c (like MCM).
 - Independent fading in each subband
 - Capacity is the sum of subband capacities

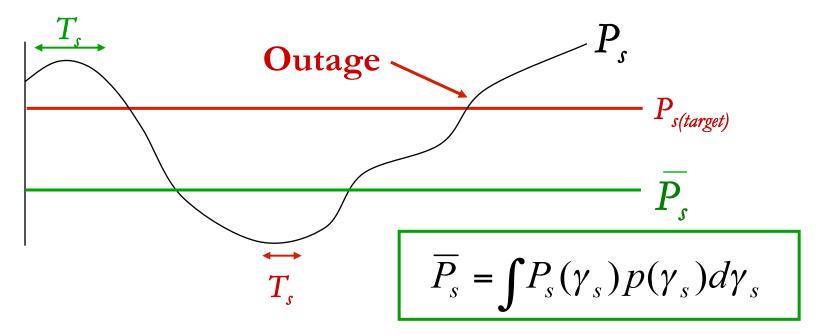


Modulation Considerations

- Want high rates, high spectral efficiency, high power efficiency, robust to channel, cheap.
- Linear Modulation (MPAM, MPSK, MQAM)
 - Information encoded in amplitude/phase
 - More spectrally efficient than nonlinear
 - Easier to adapt.
 - Issues: differential encoding, pulse shaping, bit mapping.
- Nonlinear modulation (FSK)
 - Information encoded in frequency
 - More robust to channel and amplifier nonlinearities

Linear Modulation in AWGN

• ML detection induces decision regions



- P_s depends on
 - # of nearest neighbors
 - Minimum distance d_{min} (depends on γ_s)
 - Approximate expression

$$P_s \approx \alpha_M Q \left(\sqrt{\beta_M \gamma_s} \right)$$

Linear Modulation in Fading

- In fading γ_s and therefore P_s random
- Metrics: outage, average P_s , combined outage and average.

Moment Generating Function Approach

- Simplifies average P_s calculation
- Uses alternate Q function representation
- $\overline{P_s}$ reduces to MGF of γ_s distribution
- Closed form or simple numerical calculation for general fading distributions
- Fading greatly increases average P_s .

Doppler Effects

- High doppler causes channel phase to decorrelate between symbols
- Leads to an irreducible error floor for differential modulation
 - Increasing power does not reduce error
- Error floor depends on $B_d T_s$

ISI Effects

• Delay spread exceeding a symbol time causes ISI (self interference).

• ISI leads to irreducible error floor

• Increasing signal power increases ISI power

• ISI requires that $T_s >> T_m (R_s << B_c)$

Diversity

- Send bits over independent fading paths
 Combine paths to mitigate fading effects.
- Independent fading paths
 - Space, time, frequency, polarization diversity.
- Combining techniques
 - Selection combining (SC)
 - Equal gain combining (EGC)
 - Maximal ratio combining (MRC)
- Can have diversity at TX or RX
 - In TX diversity, weights constrained by TX power

Selection Combining

- Selects the path with the highest gain
- Combiner SNR is the maximum of the branch SNRs.
- CDF easy to obtain, pdf found by differentiating.
- Diminishing returns with number of antennas.
- Can get up to about 20 dB of gain.

MRC and its Performance

- With MRC, $\gamma_{\Sigma} = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_{Σ} hard to obtain
- Standard average BER calculation $\overline{P}_{b} = \int P_{b}(\gamma_{\Sigma}) p(\gamma_{\Sigma}) d\gamma_{\Sigma} = \iint \dots \int P_{b}(\gamma_{\Sigma}) p(\gamma_{1}) * p(\gamma_{2}) * \dots * p(\gamma_{M}) d\gamma_{1} d\gamma_{2} \dots d\gamma_{M}$
 - Hard to obtain in closed form
 - Integral often diverges

• **MGF Approach**
$$\overline{P}_{b} = \frac{1}{\pi} \int_{0}^{5\pi} \prod_{i=1}^{M} \mathcal{M}_{i} \left[\frac{-g}{\sin^{2} \varphi}; \gamma_{i} \right] d\varphi$$

Main Points

- Wireless channels introduce path-loss, shadowing and multipath fading
 - Shadowing introduced outage
 - Flat-fading causes large power fluctuations
 - ISI causes self-interference
- Performance of digital communications in wireless channels random
 - Characterized by outage probability and average probability of error in flat-fading
 - Characterized by irreducible error floors in ISI
- Need mechanisms to compensate for multipath
- Diversity compensates for effects of flat fading.