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CLASSICAL PARTICLES, CLASSICAL

WAVES, AND QUANTUM PARTICLES
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This chapter provides a brief revien of a fes concepts from elasaca1 Nen toniat]) ph sics.

and presents some aspects of quantum phenomena that are impot taut in understanding

nanoelectromcs. A few experiments are discussed that show the inadequacy of classical

physics in explaining some aspects of light and matter, However, the. e experitrent are

not merely historical. They illustrate come basic properties of ‘a hat vs ill he called q000hlcm

particle’i tO designation that cos er both light and electron’S). and. in fact. sOilie O tttesc

experiments point the xv a towards nov el devices and ness technologies.

A classical particle is what we think of as an ordinary particle or object. such as a bil

liard ball, a car, or a bullet. Of course, a classical particle with mass in occupies a definite

position in space. r (t) at a time I (this position indicates. perhaps. the center of mass

of the object). For example, in rectangular coordinates, the position of a particle can be

given by

r(t) = ax (t) + a1v (t) + a-c (t),

where a. a. and a- are unit vectors along the x. v. and coordinates, respectively.

If the particle is moving along a trajectory T. it has a definite velocity. v = Jr (1) ,/dt.

as shown in Fig. 2.1, and the particle has a definite momentum, p = mv, and definite

acceleration, a — d2r (t) /d2t. Note that in this text, vectors are denoted by boldface

symbols.
Classical particles obey Newtonian mechanics.

F = to
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Figure 2.1 A classical particle trajectory T: the particle is located by position r(t) and has velocity
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where F is an applied force, either mechanical or electrical. In classical physics, physical

quantities such as position and momentum can, in principle, be measured with absolute

certainty. Using (2.2), we can, in principle, determine with certainty the particle’s trajectory

for all future times from a set of initial conditions. For systems containing hundreds or per

haps billions of particles, all interacting with each other sia collisions and mutual attractions

and repulsions. one can still determine, in principle. how each particle will behave in space

and time.
The (overiuse of the words “in principle” and “definite” in the preceding paragraphs

demands some explanation. The point is that the described calculations based on Newton’s

laws can be, in principle, performed, although it may be extremely difficult to do so. As

an example, consider the seemingly simple problem of a ball being thrown through the air.

This is actually a very difficult process to model because of the complicated (and often

unknown) form of the force term in (2.2). Air molecules, pollution, wind, rain, etc., act as

forces on the ball, making its trajectory virtually impossible to determine without simplify

ing assumptions. For example, perhaps we can assume that friction with air molecules can

be ignored. and that there is no wind or rain. In this case, there is, perhaps, only the force

of gravity. With such simplifying assumptions, the resulting equation can easily be solved,

although whether or not such a simplified problem models physical reality is an iniportant

consideration.
In actuality, many of the things that ssere just mentioned as forces can be thought of

as other particles (e.g.. air molecules and rain drops). with the result that the force term in

Newton’s law may be simplified at the expense of keeping track of’ the mutual interactions

among. perhaps. millions or billions of particles. However, given enough computational

power. the problem can be solsed. On the other hand, for systems has ing an extremely large

number of particles (say. a gas or a liquid), one can obtain information about measurable

quantities such as pressure and energy using statistical techniques. which approximate the

particle physics in a tractable way.
In the first paragraph of this section, the word “definite” was also used quite a bit.

perhaps so much so as to be distracting. However, that was, in fact, the point. Classical

physics is characterized by being able to exactly state where a particle will be, and how

fast it will be going, at a certain instant of time. However, the actual computation may he

difficult or practically impossible to perform.
Quantum mechanics, on the other hand, indicates a quite different situation. Stated

brietlv. quantum mechanics states that one can only know the probability of a particle being

at a certain position at a certain time. It also indicates that it is impossible to measure

precisely both the position and momentum of a particle—not that it is really hard to do. hut

that it is theoretically impossible For example. the more accurately position is measured,

the less will be known about velocity. Perhaps what is most disturbing is that quantum

mechanics indicates that there is no such thing as a particle, in the classical sense. All

such objects (billiard balls, bullets, electrons, etc.) exhibit properties usually associated with

waves, and properties usually associated with particles, the so-called particle—wave duality.

In a mathematical sense, this leads to particles in quantum theory having a phase component,
which will be described in the next chapter.

There are many other disturbing (to our intuition) aspects of quantum theory. some
of which will be discussed in this book. One aspect of quantum theory that should be
appreciated at the utset is that quantum theory is truly a probabilistic theory. This is in
contradistinction to much of what one usually considers to be probabilistic systems. Take.
for example, the act of rolling a die. If we know the initial position and momentum of the
die, properties of the air through which the die travels, and properties of the surface on
which the die lands, etc.. we could determine, in principle, what side of the die will face
up when the die comes to a stop. However, statistical techniques (e.g., the probability of
any given side facing up on a six-sided fair die is 1/6) are used to model this extremely
complicated, yet deterministic, problem.

In contrast, quantum mechanics yields quantities that are truly probabilistic. This may
indicate a truly probabilistic reality, or perhaps it is merely a probabilistic model of a
deterministic reality. As we approach a century of quantum theory. there is still debate
on this point; however, it can be safely stated that quantum mechanics is one of the most
successful theories ever developed in physics. Philosophy aside, quantum mechanics is
currently the only way to model very small (atomic and nanoscopic) objects and devices.

2.2 ORIGINS OF QUANTUM MECHANICS

There are many fine accounts of the development of quantum theory, thanks in part to the
fact that quantum theory was developed relatively recently, in the early 1 900s. The short
and simplified story is that quantum mechanics arose out of experiments performed in the
late I 800s and early 1 900s that could not be explained by classical physics. In this chapter,
the development of quantum theory is not described in any detail, although a few of the
basic experiments are described that led to the development of quantum theory, and that, in
particular. show the dual wave—particle nature of light, electrons, and, in fact, of all objects.
Understanding the wave properties of electrons, that is, that electrons are not small, hard,
charged balls but rather (perhaps loosely) localized bundles of energy. is absolutely essential
to understanding the fundamental principles of nanoelectronics.

Ke to the de elopment of quantum theory were experiments in the I 890s that
showed that the specific heat of metals, and thermal blackbody radiation, could not be
explained by classical thennodnamics. In addition, in 1887. Heinrich Hertz observed
what came to be known as the photoelectric effect. Stated briefly, if light is incident on
a metal. some energy carried by the light can be transferred to electrons at the metal’s
surface, and they then may have enough energy to escape from the metal. Classical elec
tromagnetic theory (itself a relatively new discipline at the time) considers light as an
electromagnetic wave, and the energy carried by the wave only depends on its amplitude
(or intensity), not on its frequency. So if light is indeed a wave phenomenon, experiments

Of course, actually the die is. itselt, a quantum object, but we can ignore this fact due to its relativelyWith this definition, we are somewhat glossing 05cr things like chaotic effecis. where often the system is

too sensimive on initial conditions to render a definite answer in practical circumstances. large mass.
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should show that the energy of photo-emitted electrons increases as the intensity of the

light increases. However, experiments performed by Philipp Lenard in 1902 showed that

this was not the case. Although more electrons were emitted from the metal as the light

intensity was increased, the kinetic energy of each emitted electron did not change with

intensity. However, when the frequency of the light was increased (i.e.. the was elength

was decreased), more energetic electrons were emitted from the metal’s surface. Thus. the

energy of the emitted electrons was proportional to the incident light’s frequency. not to its

amplitude.
Furthermore, if light is a wave, then some time should elapse between when the metal

is first illuminated and when electrons are first emitted, since a wave continuously transfers

energy to the electrons and it should take some time for enough energy to build up to allow

the electrons to escape. This was also not found to be the case—sometimes electrons were

emitted as soon as the metal was illuminated by the light. There was clearly some problem

in how this interaction was being modeled by classical physics.

2.3 LiGHT AS A WAVE, LiGHT AS A PARTICLE

As mentioned above, at the time of the experiments ins olving the photoelectric effect. light

was generally considered to be a wave phenomenon. It is worthwhile to take a brief detour

to discuss how this state of knowledge developed.

2.3.1 Light as a Particle, or Perhaps a Wave—The Early Years

Investigations into the nature of light has e a long history, not surprisingly. One of the

earliest accounts is by Euclid around 300 B.C., who, in his work Optica, noted that

light travels in straight lines, and described the law of reflection. Jumping far ahead.

we find that the 1600s were a particularly important period in the history of light, with

such figures as René Descartes. Pierre de Fermat. and Robert Hooke contributing to the

field. In 1678. Christiaan Hugens developed a fairl comprehensive wave theory of light.

which was very successful in explaining many’ of the characteristics of light known at the

time. Then, in 1704, Isaac Newton, in his work Optick, put forward his view that light

is corpuscular in nature, based primarily on the appearance of light traveling in straight

lines (since waves can bend around objects to some degree). although he also discussed a

wave theory of light. Both the corpuscular and wave theories of light could seemingly be

used tu explain much of the light phenomena known at the time, such as reflection and

refraction.

Interference. Interference obviously describes the interaction among two or more
i..ntities. Let’s first consider the familiar example of unit amplitude plane waves, represented
as

i (z) = e’’ (2.3)

where k is a constant called the ii’avenumber (to be discussed later. i = /i is the imag

inary unit, and z is the position coordinate, in this case, the distance that the wave has
traveled. We use the symbol si to represent the wave, since this notation is generally used
in quantum mechanics.

Assume that two plane waxes arc present. as shown in Fig. 2.2. with the wave repre
sented by ij1 emanating from the origin and the wave i from the position = —L. Wave
iIj travels a distance d to reach the measurement plane. whereas wave 1fr2 must travel a
distance L + d to reach the same point. At the position of the measurement plane, the total
field ij (i.e., the sum of the waves) is

If

and if

11)7 = II + 1,12 = (,ihd

=e’(l eL)

kL = 0. 2n. 4r

kL = t. 3it, 5t...,

0

= 2.

(2.4)

(2.6)

2.3.2 A Little Later—Light as a Wave

In 1801. Thomas Young performed his famous double-slit experiment, showing esidence

for the wase theory of light by demonstrating interference. He was motisated by his ear

lier work with sound waves, which are known to interfere with each other. In order to

grasp the importance of Young’s experiment, the concept of interference must first be

understood.

Figure 2.2 Plane waves traveling different distances, resulting
interference.

L ii

Measurement
plane

in constructive/destructis e
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That is. at points where the two waves are completely out of phase with each other (i.e..

their phase difference is an odd multiple of 180 ). they cancel each other out, which is

called destructive intetfèrence. At points where the phase difference is an even multiple

of 180 . they add together, doubling their value, which is called constructive inte,frrence.

Therefore, depending of the distance L, the two waves may experience destructive or con

structive interference at the measurement plane, or something in between. One can also

obtain constructive and destructive interference by combining forward and backward trav

eling waves,

ijij = e” + e = 2cos(kz)

= e e = 2i sin(kz),

using Euler’s identity (e±te = cos a + i sin a), such as occurs for vibrational waves on guitar

strings.
Moreover, more than two plane waves, or other wave types, can be combined to yield

constructive and destructive interference. A common example of light interference is a soap

film.
The wall thickness of a typical soap film is several microns. The difference in the

distance that light must trasel in reflecting from the film’s top surface, and from the film’s

bottom surface, is analogous to the difference in distance L depiction in Fig. 2.2. Thus,

light reflected from the top surface of the soap film can interfere both constructively and

destructively with light reflected from the bottom surface of the film. Since white light

is composed of many wavelengths, at any point on the film where wavelengths (i.e.. col

ors) interfere constructively, those colors will be intensified. At points on the film where

wavelengths combine destructively. those colors will be suppressed. Thickness variations

and other irregularities of the film’s surface contribute to the formation of interesting

patterns.

Young’s Experiment— What to Expect from Waves. Now, getting back to

Young’s experiment, imagine that two narrov slits are cut into a thin sheet of opaque

material, such as metal. A single-frequency (monochromatic> plane wave of light 4i is

normally incident on the double slits, as shown in Fig. 2.3.

According to Huygens’s principle, each slit reradiates a spherical wave centered on

the slit, having the same frequency as the original wave. The waves emanating from slit I

(the top slit) and slit 2 (the bottom slit> will be denoted by 1.IIi and ‘j’. respectively.

e’1’
A—.

ii

where A. j = 1,2. is the amplitude of the wave (if the two slits are equal in size. A1 =

A-> = A), and where r is the distance from the center of the jth slit to a given point on the

Figure 2.3 Young’s double-slit experiment. Incident wave ifr causes spherical waves )ij and 1I2

to travel toward the detector screen. The resulting intensity pattern I shows interference effects,
characteristic of wave behavior.

detector screen. The spherical waves iji i and combine together, such that at any point
on the detector screen,

/ er e’”
= A —

-i- —

\ r1 r-

forming an interference pattern on the screen (detector) placed behind the slits. That is. at

some points on the detector screen the vaves j1 and iJj tend to cancel each other out.
resulting in destructive interference and a dark patch on the screen. On the other hand, if
the waves combine together constructively, a bright patch occurs on the screen.

The location on the screen that lies exactly opposite to the center point of the two
slits will be associated with a bright spot. since the two waves travel the same distance
from each slit to reach this point. Therefore, they are in phase at this point. Whether or
not a particular location on the screen is bright or dark depends on the path difference that
the two waves travel to reach the screen. The locations of bright and dark spots can be
calculated if the wavelength of the light is known, although the details will be omitted here.
However, the resulting bright and dark bands on the screen depicted in Fig. 2.3 show the
interference effect, and seemed to be. at the time. conclusive evidence that light is a wave
phenomenon. In 1816. Augustin Jean Fresnel presented a mathematically rigorous treatment
of the diffraction and interference of light, showing that these phenomena can be explained
mathematically by a wave theory of light. Several years later, in 1849, the (seemingly)

or

Intensity (I)

(2.7)

(2.8)

Opaque sheet

Detector screen

(2.10)

(2.9)
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final death blow to the particle theory of light was dealt by experiments showing that light

propagates more slowly through water than though air—the particle theory of light at the

time could only account for the law of refraction if light propagated faster through a dense

medium, such as water, than through a more rarefied medium, such as air. So, by the mid

I 800s. it seemed clear that light was a wave

Around the same time, pioneers in electromagnetic theors, such as André Marie

Ampere. Michael Faraday. and Carl Gauss, were developing the fields of electricity and mag

netism, culminating in the development of Maxwell’s equations by James Clerk Maxwell

in the 1 860s. It was found that the speed of an electromagnetic wave is the same as the

speed of light, explaining light as an electromagnetic wave, From Maxwell’s equations, one

can show that the wave nature of light is resealed when the characteristic dimensions of a

system are on the order of. or smaller, than the was elength of light. When the opposite is

true. that is. when the system’s dimensions are large compared to wavelength, light appears

to exhibit ray-like qualities. This explains why the particle versus wave debate went on for

such a long time in the development ot optics—in some situations, light does act like a

particle, or at least a ray, traveling in straight-line trajectories, and in other situations, light

does behave as a wave, exhibiting diffraction.

Therefore, by the late I MOOs. the matter seemed settled .A comprehensive mathe

matical theory had been developed (electromagnetics) showing that light was a waxe, and

explaining light’s ray-like behavior at high frequencies. Electromagnetic theory then contin

ued to be developed, and in the 1890s and early 1900s, Heinrich Hertz, Guglielmo Marconi.

and others deseloped communications aspects of electromagnetic wases, leading to today’s

radio, telephone, television, and radar. and to a host of other applications. Howe er. at

about the same time when it was thought that the debate about [he nature of light (and all

electromagnetic energy) was finally settled. a scientific resolution was about to take place.

2.3.3 Finally, Light as a Quantum Particle

Before de’crihing some problems uith the wave theory of light. sic need to consider the

double-slit experiment in a bit more detail, as well as a similar experiment using particles.

Young’s Experiment— One Slit at a Time. Assume as before that a single-

frequency plane wase of light. 4i. i’ incident on [he double-slit apparatus. as shown in

Fig. 2.4. Hosseser. this time sic will consider what happens when only one slit is open.

If first only slit 1 is open. the intensity pattern I 2 is seen on the screen, as

shown in the figure. In a similar manner. if only slit 2 is open, then 12 = J2I2. Howeser.

if both slits are open, we obtain the (interference) intensity pattern I + I22 shown

previously in Fig. 2.3. which is not the same ac I + ‘2. Note that, in general,

iI2 + J2V Ii + 2i2
(2 ± 28 2Re(.$j).

where sji’ is the complex conjugate of sfr and Re () indicates that we take the real part of the

complex quantity z. Thus, when the absolute value of the wavefunction is taken, its phase

information is lost. Therefore, since interference effects are a result of phase differences of

ri
L

Opaque sheet

Figure 2.4 Modification of Young’s double-slit experiment, when oniy one slit is open. Intensity
pattern I results when slit 1 ohe top slit) is open and slit 2 (the bottom sliu is closed, and intensity
pattern I results is hen slit 1 is closed and slit 2 is open.

the two waves involved, l’l and ‘l’2 need to be added together before taking the absolute
value to obtain the correct result. So far, all seems well.

Young’s Experiment— What to Expect with Classical Particles. Now con
sider the same experiment, but with classical particles. On the far left of the two slits, a
source fires particles at the slits in varying directions. but with the same energy. The screen
is now an array of closely spaced particle detectors, and the intensity of the particle beam at
any point along the screen will be the number of particles arriving at that point per second.
The situation is depicted in Fig. 2.5.

When only one of the slits is open. the intensity pattern I or 12 is obtained, which
resembles those obtained in the similar wave experiment of Fig. 2.3. If both slits are open
simultaneously, for classical particles we expect that the intensity pattern is merely j + 12,
as shown by the dashed line in Fig. 2.5, since each particle moves along a certain trajectory.
either through one slit or the other (or bouncing backwards if they weren’t heading for a slit).
The fact that either one slit, or both slits, are open makes no difference to any given particle.

The particle beam can he sufficiently sparse. such that only one particle is passing

through the slits at any given time, so that they don’t interfere (collide) with each other.
Again, so far, all seems well.

Young’s Experiment and the Concept of Photons — One More Time with
Light, but Slowly. Armed with this knowledge. we now reconsider the double-slit exper
iment with light. Rather than simply watching for bright and dark spots on a screen placed

As a simple example, consider two plane v,aves 411 — e’1< and 412 = e “ ‘then, 4’ + 412 = 2 cos (kr)

shoing constructive and destructive interference at certain points z. However, + 414’ = I + I = 2. indepen

dent of position.

I
4
) a

2:

Detectors

(2.11)
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Figure 2.5 Young’s double-slit experiment involving classical particles. When one slit is open the

indi idual intensity pattern I or 12 is obtained. When both slits are stmultaneousl open. the intens1t

pattern I = I + I’ results. shown as the dashed line.

behind the slits, we use optical detectors that register the presence of optical energy. With

only slit 1 open. we reduce the intensity of the incoming light. If the intensity is reduced

enough. so that only one detector is active at any time, we would find that energy is not

arriving continuously, but in discrete bursts, pointing to a particle-like nature of light. (It is

only because these energy bundles are usually arriving at such a fast rate that we ordinarily

don’t notice their discrete nature.)
A few years before Lenard’ s experiment on the energy of photo-emitted electrons,

Max Planck had satisfactorily explained blackbody radiation by proposing that the energy

emitted by a blackbody should he quantiLed (i.e.. energy should occur in discrete units).

such that

where Ii is a constant (now called Planck’s constant) and I is frequency (w is radian

frequency. w 2tf). where

11 = h/2r,

h = 6.6261 x 10 s.

/1 = 1.0546 x l0 Js.

In 1905. Albert Einstein explained the photoelectric effect by applying Planck’s quanti7ation

to all electromagnetic waves, and describing for the first time what is now called a photon.

it is interesting that Einstein won the 1921 Nobel prize in physics for his explanation of the

photoelectric effect, and not for his theory of relativity, which he also proposed in 1905.
So the discrete nature of light is now recognized as quantized electromagnetics waves.

called photons. For the photon single-slit experiment using very low-intensity light (i.e., a
very sparse photon stream). over time the intensity pattern I shown in Fig. 2.4 will emerge.

We are back to something of a particle theory of light.

Young’s Experiment—A Veiy Strange Result Concerning Interference.
Now let both slits be open, and use a light intensity that is so low that only one photon is

present at any given time (as in the classical particle experiment). Recording the detector

output over time, if photons behaved as classical particles, the resulting intensity pattern

should be simply I + J, the result expected for classical particles shown in Fig. 2.5.

Instead, we find that the resulting intensity pattern shows interference effects, depicted in

Fig. 2.3, and that the observed pattern corresponds to the pattern expected based on a wave

theory! This observation shows that photons are not classical particles. The photons pass

through the slits individually, but somehow interfere with themselves in the process. This

is a fairly bad situation, to be sure. from the point of view of understanding light in terms

of everyday experiences.
Perhaps the most disturbing thing to consider is that at a point where the interference

pattern has a minimum, more photons will arrive at that spot with only one slit open than

if both slits are open at the same time. Since the intensity is so low that only one photon is

present at a time, opening an additional pathway to the detectors could not possibly reduce

the number of photons arriving at a certain spot. if photons were really particles. So we

are left with a view that light exhibits wake-like and particle-like behavior, but is clearly

neither a classical wave nor a classical particle—we call this a quantum particle. In a sense.

one must accept that light is “its own thing”; light has the properties of, well, light. That is,

light does not have an analogous counterpart to an everyday, familiar object, which makes

its interpretation somewhat difficult and unsatisfying. However, it often suffices to know the

properties of light, as partially described in the preceding discussion, in order to interpret

experiments and predict behavior.

2.4 ELECTRONS AS PARTICLES, ELECTRONS AS WAVES

2.4.1 Electrons as Particles—The Early Years

Although the concept of electrical charge has been around for most of recorded history,

it was only in the early I 800s that the existence of atoms was first established. It was, at

first, generally thought that an atom was an indivisible particle. The concept of the electron.

as a constituent of an atom, was first developed itt the late l800, due to experiments by

Recall that all electromagnetic cnerg\ radio waves, light. X-ra s. etc. is the same phenomenon, it is only

a matter of different frequencies of oscillation.

di1

a
C)

a
z

Barrier Detectors

E = hf = hw. (2.12)

(2.13)
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John Joseph (J. J.) Thomson. Shortly after, in the early 1900s, Robert Millikan measured

the charge of an electron. Therefore, the concept of the electron was fairly new at the time

that the photoelectric effect was puzzling scientists.
As the concepts of electrons and atomic structure came about, electrons were naturally

thought to be simply very small charged particles. One of the early successes of this model

was the prediction of the conductivity of metals, the so-called free electron gas model In

fact. this classical model vs ill he used to some degree later on. However, the quantization

of light led to the possibility of other phenomena being quantized.

2.4,2 A Little Later—Electrons (and Everything Else) as Quantum Particles

The fact that light is made up of photons lead Louis de Broglie in 1923 to make the radical

suggestion that all “particles” having energy E and momentum p should have wavelike

properties. too. He proposed that associated with each particle of momentum p is a wave

having wavelength (now called the de Brogue wavelength)

II
‘I, = —. (2.14)

p

so that

(2.15)

where k is the wavenumber. When applied to matter, like electrons, these waves are called

matter liaces. Dc Broglie’s prediction was verified for electrons (somewhat accidentally) by

Clinton Davission and Lester Germer in 1926 to 1927 using crystal diffraction (not double-

slit) techniques. In fact, although double-slit-like experiments with electrons have long been

discussed, their successful implementation, using one electron at a time, did not occur until

the l970s. These experiments were repeated with more accuracy in the 1980s. Figure 2.6

shows an experimental demonstration of electron diffraction interference effects using a

very sparse stream of electrons. Frames (a)—(d) represent detected electrons at increasingly

later times. At first, the detected pattern of electrons seems random. As time increases.

the apparent random distribution of electrons begins to form a clear diffraction pattern.
in exactly the same vsay as discussed previously for photons. Since in the experiments
electrons pass through the apparatus one at a time. an electron must clearly interfere with

itself.
Note that energy quantization, E hw. where E is the total (kinetic plus potential)

energy. applies to matter waves as well as photons. Since momentum is really a vector

quantity. in general,

p=hk. (2.16)

Ohm’. law, which states that for many materials the amount of electrical current passing through the

material is proportional to thc applied soltage. I — V/R, where I / R is the proportionality constant, was discovered

much earlier, around 1827.

Figure 2.6 Experimental demonstration of interference effects in electron diffraction. Frames (a)—idI
represent increasing time, over which the apparent random distribution of electrons forms a diffraction
pattern. (Based on Tonomura. A.. et al.. “Demonstration of Single-Electron Build-Up of an Interference
Pattern.” .4ni. I. Phvs. 57 (1989 117. Courtesy of the American Institute of Physics. © Hitachi Ltd.
Ads anced Research Laboratorr.

rhe reason we don’t see everyday objects behaving as waves is the small numerical

value of Planck’s constant, given by t2.13. Wtth

h h
(2,17)

p inc

l’or objects vsith mass, it can be seen that, since h is extremely small, m must be very small

in order to obtain a vsaxelength large enough to observe wave-like interactions svith physical

sstems of interest. For example. to see wave effects on the scale of nanometers. sse need

- nm. vvhich can occur for electrons and other subatomic particles that are extremely

light, but generally not for heavier particles. In fact. it is often difficult to observe wave

effects for particles heavier than electrons. For example. consider a 1 kg mass moving at 1

mis. Then. the de Brogue vsaselength Is

(2.18)

which is much too small to lead to observable wave phenomena. In particular, when .

is small compared to the distance over which potential energy changes. quantum particles

As mentioned presiously. ssave ctfcct such as diffraction are moo easily seen when the ssaselength is

on the oi der 01. 01 larger than the characteristic dimensions of the system in question.
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behave in a classical manner (i.e., quantum effects are too small to notice). In fact, many

aspects of classical physics can be obtained by setting h = 0 in the various expressions

obtained from quantum theory (note that h = 0 decouples energy and frequency). Therefore,

the 1 kg mass is far too heavy to be able to observe wave effects, and so it acts like a classical

particle. However, if the mass was iO3’ kg, then X = 6.6 x 10 m, and wave effects

would be observable in systems on the scale of millimeters. To date, wave effects have

been observed with objects ranging from subatomic particles (e.g.. electrons) to relatively

heavy 2 nm molecules.
As a comparison, the wavelength of a 1 eV photon is

he
= -- = 1.24 iim, (2.19)

since E = pa for photons, whereas the wavelength of a 1 eV electron with only kinetic

energy is

______

(2.20)

Therefore, these different particles “see” different worlds, and, in particular, electrons gen

erally exhibit wave effects at atomic dimensions, whereas photons show wave effects at

micron dimensions.
Furthermore, to get an idea of the large number of photons usually present in light.

assume a light wave carrying 1 1iW of power (W = J/s) at), 600 nm. Then, each photon

carries

E, =hw=1it x 1015 J (2.21)

of energy. Let N be the number of photons per second (so the unit of N is us). The sum

of all N photons has power

P = NE’ (lls) (J) = lii. J/s.

so that

N = 3 x 1012 photons/second.

The granularity of this flow is virtually unobservable. This is usually the case, unless great

effort is taken to reduce the intensity, and, hence, the number of photons. This is why the

discrete nature of light is not easily observed in everyday situations.

eV is election volt—an electron 9olt is the energy gained by one electron after mosing through a potential

difference of one volt. Hence, I eV= 1.6 x 10 19 j

2.4.3 Further Development of Quantum Mechanics

In 1925, Erwin Schrodinger gave a talk on de Broglie’s work at a seminar in Zurich, after
which Peter Debye commented that “to deal properly with waves one had to have a wave
equation.” While on a vacation in the Swiss Alps one month later, Schrodinger, seemingly

motivated by Debye’s comment, worked out what came to be known as wave mechanics.
This involved a wavefunction ‘Jj that satisfies a wave equation. now called Schrodinger ‘s

equation.
At first. Schrodinger did not know what the wavefunction actually was, and referred to

it by the rather cryptic name of mechanical field scalar.” He at first thought that electrons

were not particles at all, but that their particle-like qualities were merely manifestations

of a pure wave phenomena involving wavepackets, which are superpositions of waves. In

1927, around the time of Schrodinger’s fourth paper on the new wave mechanics, Max Born
hypothesized that for each quantum particle there is an associated wave 4r, Schrodinger’s
wavefunction, the modulus squared (I’fr12) of which gives the probability of finding the
particle at a certain location.

Therefore, in the double-slit experiment, we have the situation where a sparse stream

of photons. each with the same energy and momentum, and, hence, the same probability
wavefunction j,. is directed one at a time towards the slits. The wave ijs of each photon

interferes with itself in passing through the two slits (you could say that the photon passes

through both slits at the same time), such that the probability of finding the photon along

the row of detectors forms the observed oscillating interference pattern. Of course, a given

photon must hit the detectors at some definite point, and so the interference pattern can’t be

seen by the arrival of one photon. However, over time, the fact that at some locations the
probability of finding a photon is small, and at other locations large, leads to the interference
pattern ultimately observed. By de Broglie’s result, the same is true for electrons, billiard
balls. etc. Thus, in a double-slit experiment involving electrons, the electrons are said to
pass simultaneously through both slits.

It should be noted that just before Schrodinger’s work, in 1925. Werner Heisenberg
de\ eloped an approach to quantum theory involving sets of complex numbers. Max Born
and Pascual Jordan recognized these sets as matrices, and, together with Heisenberg, refor

mulated the theory as matrix mechanics. In 1926. Schrodinger showed that his method

and the method of matrix mechanics were equivalent. In this text, we use Schrodinger’s

approach because it is a bit more appealing to scientists who are accustomed to dealing
with waves. However, perhaps even more important than his matrix mechanics, in 1927,
Heisenberg formulated what is now called the J-Ieisenberg uncertainty principle, which states
that one cannot simultaneously measure the position and momentum of quantum particles

ith arbitrary precision. Written mathematically. the Heisenberg uncertainty principle is

expressed as

/2. (2.22)

This idea is quite important in quantum theory, and it will be used later.
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TABLE 2.1 MASS A”JD CHARGE OF SOME FERMIONS.

Particle Mass Charge

electron me 9.1095 x 10 ‘ kg q5 = 1.6022 x 10 u C —e

proton m,, = I .6726 x 10 2 kg e = 1.6022 v 10 C
neutron m, = 1.67503K 1027 kg —

Two other key points of quantum theory remain to be discussed, although their his

torical origins will only be briefly mentioned here. First, in the mid-1920s. it was found

that electrons behave in a magnetic field as if they had angular momentum. This phe

nomenon was initially attributed to the electron spinning about its own axis, and so this

quantity was called spin. It was quickly determined that the electron was not, in fact.

spinning about its own axis, but that spin was an intrinsic quantity associated with the

electron. Spin was found to be quantized in multiples of 11. Particles with integral (in units

of Ii) spin are called hosons. (Examples are photons and quantized lattice vibrations called

phonons.) Particles ith half-integral spin are called ferniions. (Examples are electrons.

protons, neutrons, quarks, and neuthnos.) Spin has no classical analogue since, although

classical particles can possess angular momentum due to orbital motion, or literal spinning

(rotating) about an axis, classical objects do not have any intrinsic spin. The typical advice

for students learnmg quantum physics is to accept spin as just another intrinsic property of

an object. and not to become bogged down in trying to ens ision spin in terms of everyda

phenomena.
The other key quantum deselopment, also having no classical analogue, ssas the Pan/i

exclusion principle, proposed in 1925 by Wolfgang Pauli to account for the observed patterns

of light emission from atoms. The exclusion principle was quickly generalized to include

all quantum particles with nonintegral values of spin. i.e.. fermions.

The Pauli exclusion principle states that two or more identical fermions cannot occupy

the same quantum state.

The importance of this seemmglv mild statement cannot be overestimated, as this

characteristic of fermions is the basis for understanding most materials, including the des el

opment of the periodic table, and characteristic properties of insulators, conductors, and

semiconductors.
For later reference, the mass and charge of some fermions are listed in Table 2.1.

2.5 WAVEPACKETS AND UNCERTAINTY

Quantum particles (light, electrons, bowling balls, etc.) can be thought of as, in some
sense, quantized bundles of energy E = hw, having wave-like properties (frequency, w,

Furthermore. am object that is made up of even number of fermiom is a (composite) boson. sshereas an

particle that is made up of an odd number of fermions is a (composite) fermion. Therefore, hydrogen. with one

electnm and one proton, is a boson. Helium, with two each of electrons, protons, and neutrons, is also a boson.

and wavelength, .), and particle-like properties (momentum, p) that are interrelated—the

so-called wave particle duality. For example. electrons have a finite and definite charge

and mass (in a nonrelativistic sense, the rest mass), which seems like a particle property.

although electrons also have a de Brogue wavelength, and can exhibit wave-like diffraction

(usually at atomic length scales). Photons have no mass or charge. but can be thought of

as “pure energy.” As described previously, photons exhibit both wave-like and particle-like

behavior.
One attribute of classical particles is that they have a certain trajectory in moving

through space that can be described using Newton’s laws. For example. in one dimension.

a particle occupies a certain position x (t) at a certain time t. On the other hand, consider

a typical plane wave

sIt (tx I = Ac a0t k’H 1223>

in one dimension. sshere A is the amplitude. w is the radian frequency. and k is the wasenum

her (k = 2t/.>. Wase propagation (classical electromagnetic fields, pressure. displacement.

etc.) can often be characterized by a plane wave si that extends oser a region of (or all

of) space. rather than being localized to a single point. The field is a function of position

.v and time t as independent sariables (although k and w are interrelated. Wase—particle

duality would seem to imply that quantum particles will not be localized at a single point,

like a classical particle, nor spread out over all space, like a classical plane wave, but

v ill be something in hetss een these tss o cases. For instance, free electrons in space usually

has c energies that make the sIc Broglie vs-as elength sery small, such that diffraction and

interference effects can often be ignored. Viewed from a distance large compared to its

wavelength, an electron appears like a particle. Viewed from a distance small compared to

its wavelength, usually atomic dimensions, the “ spread” of the electron becomes evident.

At suftmciently low energies the wave nature of the electron becomes evident over larger

space scales, since momentum becomes smaller and so. by (2.14), wavelength becomes

larger.
One way to model this dual behavior is with a sias’epacket. which is a wase that

is both propagating and localized in space and time. If viewed from a sufficiently large

distance (relative to waselength. the wavepacket looks like a particle moving along some

trajectory. Viewed from a sufficiently small distance, one can see the “ spread” of the

wavepacket. Therefore, the wavepacket has attributes of both waves and particles, which is

obviously something that s needed for quantum particles. Although wavepackets won’t be

used explicitly in the detailed examples later in the text, the basic ideas will be presented

here as a conceptual tool. In addition, this leads to the important concepts of phase and

group velocity.
To understand vs avepackets. one first needs to appreciate some aspects of waves.

Consider the single frequency plane wave given by (2.23). and recall that frequency and

wavenumber are related, that is, w w (k) or Ic = k (w). For example. for a photon, the

familiar relationship between velocity, wavelength, and frequency,

c = )f. (2.24)
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where c is the speed of light, leads to Now, instead of a single plane wave, consider the quantity

c = o = ke (x, t)
= f a (k) e (2.31)

2Dt ).

such that where the dependence w o (k) is explicitly included, It should be first noted that for

any value of k. e is merely a plane wave having wavenumber k and related

0) (k) ck. (2.25) frequency w w (k). and a (k) is just a number, interpreted as the amplitude of the plane

wave. Therefore, the integrand of (2.31) represents plane waves of varying amplitudes and

For a particle with mass in and only kinetic energy.
avenumbers. and the integration is simply a summation of those plane waves.

- It can be shown that (2.31) can represent a wave localized in space. i.e.. a wavepacket

p2 (hk)2 (like a bundle of waves). For example, assume

E = = mt2 = = (2.26)
2 2m 2n, a (k) = 1, k0 — k <k <k0 + k, (2.32)

such that = 0, elsewhere,

(k)
—

( 7)
as shown in Fig. 2.7.

— 2,n ‘

‘ With this form for a (k). one can interpret (2.31) as a summation of waves with

waenumbers within some Ak range of a given value k0. The integral (2.31) becomes
Relationships between frequency and wavenumber such as (2.25) and (2.27) are called
aispeision ie,aaom.

j ( 1) — I etdk ( 33)
The phase telocity of the plane wave (2.23) is the velocity of a constant phase (and

— Jkg_\k
amplitude, in this case) planar wavefront. Therefore, setting the phase term equal to a

constant c, which can’t be evaluated unless the dispersion relation w (k) is known.

It is useful to consider several simple cases, beginning with the situation, as for

wt — kx = C, (2.28) photons in free space. where w is linear in k. o = ck. Then, (2.33) becomes

at

and differentiating with respect to time leads to t(i (x. t)
= J e_hIt dk (2.34)

w — k w — kt1, 0. (2.29) = 2Ak e
sin (Ak (Ct — x)),

(2.35)
di Ak(ct—x)

such that the phase velocity is given by i(k)

=
. (2.30)

For the plane wave (2.23) this is the only idea of velocity. However, (2.23) describes
a wave spread out o’er all space and time. It certainly has wave behavior, but it does not
resemble a particle (localized energy bundle).

k

We said presiously that t and .r are independent in the wa’e picture. This is true, in the manner in s hich

they are used in 12.23). Howeser. once v.e set the phase term wf kr equal to a constant ito ‘watch” a specific

point on the wasetorm move), then, as r increases, must increase to keep wt — kx constant. Therefore, x = i (r)

for purposes of keeping track of the advancement in time of the constant-phase point. Figure 2.7 Rectangular amplitude distribution for wavepacket construction.
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which is a wavepacket moving with velocity c (note that v w/k = c) and having an
envelope proportional to

sin (Ak (ci
sine (Ak (Cr — xl) . (2.36)

Ak(ct —.1)

The function sinc(x) sin (x) /x is centered at x 0 and decas away from that point, as
shown in Fig. 2.8.

Therefore, the wavepacket (2.35> is concentrated around the point x ci at a given
timer, and moves at the phase selocity if) = c. Referring to the discussion of quantum parti

cles, it seems reasonable to model a quantum particle as being associated with a wavepacket,
since a wavepacket exhibits wave-like behavior and, when siewed from a distance large
compared to the spread of the envelope (the sine function), it resembles a particle, since it

is somewhat localized in space.
As an interesting aside, the behavior of the sine function can he used to gain insight

into the Heisenberg uncertainty principle. Consider the function sinc(Akx). If the spread

in wavenurnbers Ak is very small, then, since p = hk, the momentum varies over a

small range. Due to the argument of the sine function, the was epacket enselope is spread

out over a large range of space. x. So a small spread in momentum indicates a large

spread in position. As Ak increases, the wavepacket will become more concentrated in
space.

In particular, the function sinc(Akx) is rapidly decreasing outside some range Ax

centered at x = 0. and one can consider the wave to be “contained” within this region of

space. It is useful to choose the ssidth of the wavepacket in space to extend to the points

where the amplitude of the wavepacket’s envelope decreases to 63 percent of its initial

value. That is, the spatial extent of the was epacket is described by Ax such that

AkAx = . (2.37)

Of course, this choice is somewhat arbitrary. but is one of mans reasonable choices.
The relation (2.37) makes it clear that increasing Ak causes Ax to decrease. and vice

versa.

sin(.)

Therefore, a wavepacket tightly confined in space is made up of plane waves having

a large spread in wavenumbers, and a wavepacket loosely confined in space is made

up of plane vaves having a small spread in wavenumbers.

If Ak goes to zero, then the wavenumber (and momentum) is known exactly, and

then Ax must go to infinity to maintain >2.37), so that the position can be any value. If Ax

goes to zero, then the position is known exactl. and, conversely. Ak must go to infinity.

so that momentum can take any value. Using k = p/ti. one obtains

ApAx = —i-. (2.38)

which, except for the factor of 7t, is almost the famous Heisenberg uncertainty principle,

ApAx ti/2. (2.39)

The uncertainty principle states that s.se cannot know both momentum and position to arbi

trary accurac If we know the position of a particle with great precision (Aa small). then

the uncertainty in the particle’s selocitv is very large. Therefore. since the Heisenberg uncer

taint\ principle applies to quantum particles, and is at least qualitatively consistent with the

dea of a wavepacket. we can have some confidence in thinking of quantum particles as

as epackes.
As an example. consider an electron. If we know the position of an electron to

naiiusealc accuracy. Ax 10 in. then, from (2.39), Ap 5.25 x 10 2 kg m/s, and

— Ap m) 5.77 x 1O m/s. which is a large uncertainty in the electron’s velocity.

Thus, as expected. at atomic dimensions, the quantum nature of the particle is very

Important.
If we instead consider a macroscopic object such as a paper clip, the situation is

quite different. .\ssume that we know the position of a paper clip to within 1 mm (10

iii>, a reasonable assumption since. perhaps. it is sitting on a table in front of us. Assume

that the paper clip has mass 10 kg. Then, the uncertainty in the paper clip’s veloc

its is

ti2 1.05 x 10
Ar> = - = 5.25 x l0 m/s, (2.40>

— ,,iAx >2> l0’ 10

which is an extremely small number. Our everyday intuition would lead us to believe

that the paper clip is stationary, i.e.. that v = 0. However, at 5.25 x 10 29 mis, it would

take 1.9 x 1022 seconds (about 6 x 1014 years) for the paper clip to move just 1 xm.

Recent observations from the Hubble Space Telescope indicate that the age of the uni

verse is around 14 billion years, which is 14 x l0 years! Thus, there is no way for

tis to say that the paper clip sitting on the table in front of us is not really moving,

albeit extremels slowly. Thus, the Heisenberg uncertainty principle applies to all objects,

x

Figure 2.8 Plot of sin x> / r ‘ersus x
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Although (2,45) vas obtained from the quantum uncertainty between momentum and posi

tion, it is really a classical uncertainty between time-frequency Fourier transform quantities

(i.e., using E = liw, we obtain AwAt > 1/2),

Dispersion. Returning to the discussion of wavepackets. we find that in the case

considered previously, the wavepacket does not change its shape as it propagates. Often,

as will be seen in later chapters, one needs to consider a dispersion relation that is more

complicated than the simple linear dependence considered above for photons in free space.

in general, this leads to the wavepacket changing shape (generally, spreading out) as it
propagates. In addition, in this case the phase velocity is not the velocity of primary interest.

To examine this phenomenon, it is convenient to expand w (k) in a Taylor’s series
around the center wavenumber k = k0. obtaining

1 do
w (k) o) (k0) + - (k — k0) + -- (k — k0)2 + ... (2.46)

k k0 Ic —Ic0

= w + u (k — k0) + (k k0)2 +

Now assume that it is sufficient to keep only the first two terms in (2.46). Then.

-‘-Ak

s (.v. t) e iko(c1,t ) I e )(cU dk
Jk1 sk

sin (Ak (art — x))

____________

Ak(w x)

where i’, = wO/k. The elocity of the ens elope is not the phase selocity. but a,

ss hich is called the group i-e/oc’ilv. Therefore.

sin(Ak (r.r —v))
b(.v.r) e

____________

Ak(i’çt.V)

In this case, the wa epacket moves through space and time as a localized bundle of
approximate width

Ak (r’0t — x) = -- (2.50)

but for familiar macroscopic objects, it leads to results that are consistent with everyday

observations.
Notice that the uncertainty principle (2.39) is for a one-dimensional system. and there

fore one can sa that it relates momentum in the x-coordinate and position along the

-coordinate. i.e..

Ii 2. (2.41)

Generalizing to three dimensions. ‘Ae haxe

Ap Ax 5 2. (2.42)

A >5-2. >2.43)

> 5/2. (2.44)

so that the unccrtaint principle does not preclude the simultaneous measurement of. say.

momentum p, and position a. This v ill be discussed further in Section 3.1.4.
One can gain an intuitix e understanding of the position-momentum uncertainty prin

ciple for a quantum particle by the folloxs ing reasoning. If one measures. say, the position
of a macroscopic object b\ shining light on it. the momentum carried by’ the illuminat

ing photons will not measurabl\ change the momentum of the object. due to its large
mass. Thus, the object’s position can be measured without changing its momentum. How

ever. this is not the case for an atomic or subatomic particle, due to its extremely small
mass.

From (2.39>. one can obtain an uncertainty relationship between energy and time.

Using , = ti?5. E Sw. and, specifically for photons. k = w/c and cAt = As. then

(2.47)

= 1.. >2.-iS>

(2.49)

that is centered at the point

(r—s)=0. (2.51)

That is. starting at t = 0. the wavepacket is centered at x = 0. and at a given time t the

wavepacket is centered at the point

AEAt 5/2. (2.45) 5 = Vgt (2.52)
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and occupies a spatial extent

7t
V t

2Ak
(2.53)

As mentioned above, the group selocity is the elociiy of the ssa\epackets envelope.

rather than the phase velocit of the “center” plane ‘save that has wavenumher 1m The phase

velocity being associated with the center plane wave is a result of the approximate expansion

of the w (k) relationship. The wavepacket is actually made up of planes ‘saves, each with

an individual ssavenurnber k and associated phase velocity t’1, = o/k. Each different plane

wave moves at a different selocity. Over time, the plane svaxes ssill reach a given point

at different times, tending to spread out the wavepacket’s envelope, the width of which,

according to (2.53), grows as time increases. So the center of the avepaeket moves as time

changes, indicating propagation (or a particle trajectory). and the wavepacket simultaneously

spreads Out in space as time increases.

It should be noted that often, rather than the abrupt amplitude function a (k) given by

(2.32). a more physically realistic function is used, typicalls a Gaussian.

A 1
(2.54)

However, in this case. the calculations shown prcviously become a bit more complex than

for the simple function (2.32).

2.6 MAIN POINTS

This chapter presented some information on the origins of quantum theory. and compared

classical physics and. in particular. classical particles and v ayes, with quantum ph sics.

After reading this chapter, you should know that

• classical particles has e a definite position in space. and definite velocity and momentum:

• quantum mechanics states that sse can onh know the probability of a particle being

at a certain position at a certain time, and that it is impossible to measure precise’y

both the position and momentum of a particle;

• quantum mechanics arose from experiments in the later 1800s and early l900s con

cerning thermal blackbod radiation and the photoelectric effect that could not he

explained by classical physics;

• in the quantum picture. energy is quantized as L =

• all “particles” having energy and momentum has e ss ave-like properties. described by

the de Broglie wavelength. When the material space in question is large compared to

), the particle acts like a classical particle. When the space is small compared to ,

the particle exhibits wave-like properties.

Furthermore, you should

• be familiar with the idea of spin, and the Pauli exclusion principle;

• know what fermions and bosons are, and their relationship to the exclusion principle:

2.7 PROBLEMS

1. What is the energy (in J and eV) of a photon having wavelength 650 nm? Repeat for
an electron having the same wavelength and only kinetic energy.

2. For light (photons), in classical physics the relation

c = (2.55)

i5 often used, where c is the speed of light, f is the frequency, and . is the wavelength.
For photons. is the de Broglie wavelength the same as the wavelength in (2.55)?
Explain your reasoning. Hint: Use Einstein’s formula

E inc2 = + ,,i0c4, (2.56)

where m0 is the particle’s rest mass, which, for a photon, is zero.

3. Common household electricity in the United States is 60 Hz, a typical microwave
oven operates at 2.4 x l0 Hz. and UV light occurs at 30 x 1015 Hz. In each case,
determine the energy of the associated photons in I and eV.

4. Assume that a HeNe laser pointer outputs I mW of power at 632 nm.

(a) Determine the energy per photon.
(b) Determine the number of photons per second, N.

5. Repeat Problem 2.4 if the laser outputs 10 rnW of power. How does the number of
photons per second scale with power?

6. Calculate the de Broglie wavelength of

(a) a proton moving at 437. 000 mIs
(h) a proton with kinetic energy 1.100 eV
(c) an electron traveling at 10,000 m/s
(di an 800 kg car moving at 60 km/h

7. Determine the wavelength of a 150 g baseball traveling 90 rn/h. Use this result to
explain why baseballs do not seem to diffract around baseball bats.

8. How much would the mass of a ball need to be in order for it to have a de Brogue

wavelength of I m (at which point its wave properties vould he clearly observable)?
Assume that the ball is traveling 90 rn/h.

9. Determine the momentum carried by a 640 nm photon. Since a photon is massless,
does this momentum have the same meaning as the momentum carried by a particle
with mass?

10. Consider a 4 eV electron, a 4 eV proton. and a 1 eV photon. For each, compute the
de Brogue wavelength, the frequency. and the momentum.

11. Determine the de Broglie wavelength of an electron that has been accelerated from
rest through a potential difference of 1.5 V.

12. Calculate the uncertainty in velocity of a 1 kg ball confined to

(a) a length of 20 jim
(b) a length of 20 cm
(c) a length of 20 m• understand wavepacket concepts. and the idea of phase and group velocity.
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(d) What can you conclude about observing “quantum effects” using 1 kg balls?

What kind of objects would you need to use to see quantum effects on these

length scales?

13. If we know that the velocity of an electron is 40.23 ± 0.01 mIs, what is the minimum

uncertainty in its position? Repeat for a 150 g baseball traveling at the same velocity.

14. If a molecule having mass 2.3 x lO_26 kg is confined to a region 200 nm in length.

what is the minimum uncertainty in the molecule’s velocity?

15. Determine the minimum uncertainty in the velocity of an electron that has its position

specified to within 10 nm.

16. Explain the difference between a fermion and a boson, and give two examples of

each.

QUANTUM MECHANICS OF

ELECTRONS

STrvl image of atoms forming a ‘quantum corral,” resulting in standing electron waves. The diameter of
the ring is approximately 14 nm. (Courtesy Almaden Research Center/Research Division/NASA/Media
Sets ices.)

As described in the pre ious chapter, in the early 1 900s, it became clear that classical New
tonian mechanics was unable to explain a considerable amount of experimentally observed
phenomena. Light was recognized to have a discrete nature, and both light and matter were

found to exhibit properties of classical waves and classical particles, and, in addition, to

exhibit behaior that was completely unknown to classical physics. In the following discus
sion, when particles (usually electrons, hut perhaps atoms, paper clips, billiard balls, etc.)

are referred to. it should be recognized that all such objects. irrespective of size, are really

quantum particles. The mathematical description of such particles is given by solutions of
Schrodinger’ s equation

Schrddingers equation describes quantum particles hasing mass. Photons, which do not have mass, obey

a quantized version of Maxssell’s equations. although we will not consider that development here.
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