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Chapter
(d) What can you conclude about observing “quantum effects” using 1 kg balls?

What kind of objects would you need to use to see quantum effects on these

length scales?

13. If we know that the velocity of an electron is 40.23 + 0.01 mIs, what is the minimum

uncertainty in its position? Repeat for a 150 g baseball traveling at the same velocity.

14. If a molecule having mass 2.3 x l0_26 kg is confined to a region 200 nm in length,

what is the minimum uncertainty in the molecule’s ‘ elocitv’?

15. Determine the minimum uncertainty in the velocity of an electron that has its position

specified to within 10 nm.

16. Explain the difference between a fermion and a boson, and give two examples of

each.

QUANTUM MECHANICS OF

ELECTRONS

3

STM image of atoms forming a “quantum corral,” resulting in standing electron waves. The diameter of

the ring is approximateh 14 nm. (Courtesy Almaden Research Center/Research Division/NASA/Media
Sen ices.)

As described in the pre\ious chapter, in the early 1900s. it became clear that classical New

tonian mechanics was unable to explain a considerable amount of experimentally observed

phenomena. Light was recognized to have a discrete nature, and both light and matter were

found to exhibit properties of classical waves and classical particles, and, in addition, to

exhibit hehax ior that was completely unknown to classical physics. In the following discus

sion. when particles (usually electrons. but perhaps atoms, paper clips, billiard balls, etc.)

are referred to. it should be recognized that all such objects. irrespective of size, are really

quantum particles. The mathematical description of such particles is given by solutions of

Schrodinger’ s equation.T

Schrodingers equation describes quantum particles having mass. Photons. which do not have mass, obey
a quantized version of Maxwell’s equations. although we v ill not consider that development here.
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44 Chapter 3 Quantum Mechanics of Electrons Section 3J General Postulates of Quantum Mechanics 45

Schrodinger’s equation cannot be derived from fundamental principles (the same ca
be said for Newton’s equations), although before presenting Schrodinger’s equation for
mally. a plausible development will be outlined.

From the wave standpoint. a one-dimensional plane wave has the form7

(x. t) = AeJt). (3.1)

where k is the wavenumber and w = (0 (k) is the radian frequency. From (3.1). note that

= 1
(3.2)

ij(x.t) t 4i(x.t) dx-

From the particle perspective, the total energy E of a particle is the sum of kinetic and
potential energies,

1 2

E = -my2 + V = - + V,
2 2in

where p is the particle’s momentum, in is the particle’s mass, and V is the potential energy

seen by the particle. So far, these are classical relations. The quantum nature of the problem

is incorporated into the energy expression using quantization of energy. (2.12). and the de

Broglie relation. (2.15), leading to

E = = h ( 8fr (x, t) = (11k)2
+ V, (33)

\i4i(x,t) dt ) 2m

I a2frx.t±v
2m \ ifr(x,t) Bx2 J

such that

di4j(x t) / 32 \

=1——-—+V)fr(xt). (3.4)
dt \ 2m3x2

This is Schrodinger’ s equation in one dimension, although not the most general form.

As will be seen, this is the fundamental equation for describing quantum particles with

mass, of which. throughout the text, primary consideration will be given to electrons. In the

next section. the general postulates of quantum mechanics will be presented. one of which

refers to Schrodingers equation, followed by a discussion of each postulate. In the field

of nanoelectronics this constitutes the most difficult material to comprehend: however, it is

extremely important.

7To obtain the time-domain wave classically. e would take the real part of a time-harmonic phasor.

si (x. t) = Re {Aecu1} = A cos tkx — wt),

3.1 GENERAL POSTULATFS OF QUANTUM MECHANICS

POSTLLAII. 1. To every quantum system there is a state function, 4J (r. t>, that con-
tains eerything that can be known about the system.7

In the following discussion. a quantum system will be either a single particle, t’ipically

an electron. and its environment. or a system of particles. The state function. or wavefiinc

tion, is complex valued and mathematically well behaved (i.e., it is a finite, single valued,
and continuous function), and probabilistic in nature This latter fact makes the wavefunc
tion fundamentally different from quantities obtained from Newtonian dynamics, such as
the trajectory of a particle, or the motion of a wave. In particular. p (r. t) = ‘If (r. t)12 is

the pivbabilitv den5its offinding the particle at a parti(ular point in space r at tinie t.

That is. the probability of finding the particle in a region of space Q is

P = I r. t)2dr = I (r. t) (r, t)d3r. (3.5)
Ju Jo

In particular, in one dimension, the probability of finding the particle between points x = a

and x = b is

b

P = IJ7 (x. t) ‘P (x. 1) dx. (3.6)

B continuity of the was efunction. the probability of finding the particle in a small volume

element dQ centered at r is

P = f 1+ (r. t)12d3r= 1+ (r. t)2dQ. (3.7)
dO

Furthermore, since the particle must be somen here in space at any time t.

I (r.t)(r.t)d3r= 1. (3.8)
dii space

We frequently use (3.8) to normalize solutions of Schrodinger’s equation.
It is worthwhile to reiterate that quantum systems are true probabilistic systems. As

mentioned previously, most classical systems we think of as probabilistic, e.g., rolling a
die or flipping a coin, are not really probabilistic at a fundamental level,1 Probabilities are

The sector r is called the position sector, and represents the sector from the origin to some point in space.

In rectangular coordinates.

r=a.s --a55+a-i.

where a . a, and a- are unit sectors. The use of the position sector leads to notational convenience, since ‘P (r, t)

simply means ‘P (x, y, - t).

Here we take the iew of what is called the C’openhagen Interpretation (Or Bout interpretation) of quantum

mechanics. which is a mainstream x iew. although not the oni iew. in phsics.
5Although. if sou want to he a stickier, quantum mechanics gosern the behastor of the die. too, and so

we are back to a probabilistic description. Howeser. the quantum nature of the die is obscured due to its large

mass resultsng in a minuscule de Broglie ssaselengtlfl. Newtonian dnamics. hosseser complicated to apply in

this Lase. models the trajector of the die sery well.assuming the amplitude A is real valued. Here, it is more useful to consider a complex exponential form.
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merely assigned to provide a coiwenient model of the system. Some scientists interpret the

probabilistic nature of quantum mechanics to reflect the base probabilistic nature of, well, line segment is

nature. although others argue that quantum mechanics is simply a probabilistic model of , ()

nature, and not the true description of physical reality. However, there is no argument about p f sj2 ( —x) cix =

the accuracy of quantum mechanics—it is considered to be one of the most successful ‘ I 2 ‘
L 2

physical models ever developed. or 50 percent, and is similar for odd values of ,z. Note that in a classical model. one would
be able to say exactly where the electron is at all times. In the quantum model. one can
only talk about probabilities of finding the electron at a certain position at a certain time.
For a given state at time t that probability is high where 4’ (x t)12 is large.

Example
POSTULATE 2,

The following chapters will present methods to find the state function for electrons in
several relatively simple structures. However. at this point, it is worthwhile to give a

concrete example of a state function. since it is a relatively abstract concept (although the (a) Every physical obser able 0 (position. momentum. energ. etch is associated with
a linear Flermitian operator

mathematical functions involved are usually quite ordinary).
Donsider an electron that is confined to a line segment of length L. where the line (b) Associated with the operator is the eigenvalue problem,

segment extends from x == —L/2 to x = L/2 and where, on the line segment, potential

energy is zero. As will be seen in the example on page 65 and in the next chapter, it turns th,, = i1j, , (3.13)

out that the electron can be in one ofan infinite number ofpossible states,where each state

can be signified by an indexTii. The possible states are given by wavefunctions (x, t), such that the result of a measurement of an observable is one of the eigenvaiues ,

where of the operator .

‘tin ‘

1,2 (c) If a system is in the initial state ‘I’, measurement of 0 will yield one of the elgen

(x, t) = ( sin _)et. (3.9) values of with probabi1ityt(
nrt

\LJ L

fern even, and () f (r. t) ji (r) dr , (3 14)

‘4’( t)
(2)1/2

-. = — cos (_x) e (3.10) and the state of the system will change from to
L L

This is a fairly long postulate. and each item will be discussed in some detail.

for n odd, where

h2 (nn)2 3,1.1 Operators
E = — — (3.11)

2me L
First. let us discuss briefly what is meant by an operator. An operator is a mapping from

is the energy of the electron in the iith state, n = 1. 2. 3, . . . . If the electron is in a state one quantity to another. loosely speaking. For instance. a 3 x 2 matrix maps 2 x 1 matrices

given by an even value of ii. then the probability of finding the electron somewhere along to 3 x 1 matrices,

the line segment is, from (3.6), F a11 a12

-

h1 1 r 1 I

L IL
(fl I (121 a2 C2 I .

(3.15)

P=I (x,t)(x,t)dx=— sin —xdx=1. (3.12) L a32 j h2 j
c3 j

L/2 2 L/’

—L/2 — /2 L I

That is, as expected, the probability of finding the electron somewhere along the line I Postulate 2 is quite complicated, and its explanation is rather long and involves difficult concepts. bor
the specific purpose of understanding the remainder of the text. it is also the least directl) usetul of the four

segment is 100 percent. The same result holds if the electron is in a state given by an odd postulates (beyond this chapter. with the exception of a fe examples, we really only need Postulates I and 4.
value of n. Furthermore, the probability of finding the electron, say, on the left half of the although Postulates 2 and 3 are included tbr completeness. Therefore. if desired the reader ma’ choose to skip

this postulate and move on to postulate 4.
Here we assume spatial eigenvectors (i.e.. those associated ss ith time-independent operators). and it is

In addition, the electron can be in some combination of states. i.e., a sum over n, although this will he assumed that the eigenvectors are appropriately normalized to form an orthonormal set, This ssill be discussed

discussed later, later,
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If one considers a set S1 consisting of all 2 x I matrices. and a set S2 consisting of all 3 x I where a, 0. That is,

matrices. the mapping M : S1 —+ S2 can be accomplished via 3 x 2 matrices. r -i r i r
For our purposes. we will often need operators that map one function to another. For I j I . = vi I I . (3.22)

instance, when we take the derivative of the sine function, we obtain the cosine function. L 2 _l j [ ( _

1) j [ ( —

i) j
One can think of the mapping between these two functions as the derivative operator, and r i r
= d/dx : {sine} —* {cosine}. That is, apply the derivative operator to the sine function, [ 1 1 ] I I = —‘i I I . (3.23)
and obtain the cosine function. -

I [ —
v”1 — I ) j [ — —

1) ]
tJ.

sin(x) = cos (x) . (3.16) 3.1.3 Hermitian Operators

Hermitian operators form an important special class of operators. Hermitian operators have

3.1.2 Eigenvalues and Eigenfunctions real eigenvalues. and their eigenfunctions form an orthogonal, complete set of functions.

. .
Orthogonal means that

Now. with the idea of an operator established. the concepts of eigenvalues and elgenfunctions

can be discussed. An eigenfunction of a certain operator is a nonzero function such that, * (r) frj (r) d3r = 0 (3.24)
when we apply the operator to the eigenfunction. we obtain a multiple of the eigenfunction

back again. That is. for all i j, which is called an orthogonaith’ condition. The subscript indicates a certain

-I _ I (3 17’ eigenfunction. That is. if 4c and fr, are two different eigenfunctions. i.e..
0 j ,, — A.,1 ‘ n . . .- .

alfrI = kifri, (3.25)
where is an operator, is an eigenfunction of the operator, and k is called an eigenvalue

(not to be confused with wavelength). In general. there are many (perhaps infinitely many) °‘1J2 k242, (3.26)

eienfunctions and eigenvalues. For example. consider the operator
‘— -, and jj Jj2, then

—
(1_ I,

0 (3.18) 1 (r) 2 (r)d3r = 0. (3.27)

the second derivative operator, acting on functions defined over 0 x L. Every function Jf the wavefunctions have been normalized such that
1Jfl (x) = sin (nrtx/L) is an eigenfunction with eigenvalue = — (nrr/L). since

, I (r) ijj (r)d3r = I. (3.28)
d— . flTt \ f!l7t\/. llTt ‘

(sin—xJ=——)(sin——x). (3.19)
dx2 \ L L ‘ \ L i then the wavefunctions are said to form an orthonormal set, i.e.,

As an example of a matrix operator. simple matrix multiplication shows that the operator f (r) 4’, (r) d3r = { f ! (3.29)

Ei 1 1
0. i.j.

0 = [ 2 — 1 j
(3.20)

When one says that the eigenfunctions of a Hermitian operator form a complete set
of functions, it means that any function can be represented as a sum of eigenfunctions,

has eigenvalues and eigenvectors
1 (r) = a,,i4i,, (r). (3.30)

= = I J. (3.21)
0

L V 3 — 1) a
j The expansion coefficients a0 can be obtained using orthonormality. That is, start with

r i (3.30), multiply both sides by i4i, and integrate.

1521 I
L i)

j ffr (r) (r)dr = ta,, f i (r)s{j (r)d3r (3.31)

TFinding the eigenalues and eigenvectors of a matrix operator is obviously more involved, and will be
— 3 32

omitted here, although this topic is discussed in textbooks on linear algebra and applied mathematics. — am. . )
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Example I with corresponding eigenvalues ) = (n/L)2 ii — 1 . 2, 3 Functions on this interval

As a familiar example. any periodic function with period 2 can be written as the Fourier can be expanded as

series

( lfltX)
(x) = Ea,i/sin — .

(34l)
lI (a) = — : a11 e1’, (333) ?1=I

fl

For the differentialoperatord2/dx2,ifr1(O) = j/(L) = 0. the eigenfunctions are found to be

where ‘ji (x) = are normalized eigenfunctions ofd2/dx2 subject to periodic

(
flJtX)boundary conditions, 4i(x) =

L
cos — (3.42)

fl(—) = (n), i(—) = dr), (3.34)
with corresponding eigenvalues ) = (nrr/L)2, () 1 , 2 where, for notational com

with eigenvalues ) = 112 i.e.. venience, we use Neumann’s number r, defined as

d2 { 1, n=O
7zx

_%i’, (3.35) Sn
2

(3.43)
6

,
nO.

Functions on this interval can be expanded as

(flEX)
‘1’ (x) = b/cos — (3,44)

L
Note that the same function ‘I’ has, in general. many different representations. asso

ciated with different operators. That is,
Since both sets of eigenfunctions form a complete set of functions on the interval (O L),
either representation can be used. For example. the function *4r (x) that is equal toO from

‘I’ (r)
=

a,jJ (r) (3.36) x = 0 to x = L/2. and equal to I from x = L/2 to x = L, can be expressed as (3.41) with
n

L

= b1 (r). (3.37)
= f 4r x) ‘ (x)dx (3.45)

0
fl

r L2 [TeL(flax

where {} and {} are sets of eigenfunctions associated with different operators (say, f sin t0 dx + sin (l)d
LL2 L

andi,
= — (cos (na) — cos

= (3.38)
(-i)). (3.46)

= (3.39)
or as (3.44) with

L

However, as long as both operators and i are Hermitian, the expansions (3.36) and (3,37) J 4i () (x) dx (3.47j
0

-L/2 r Lwill be valid.

J nax /r, (flax
= 1—cos

L Lo V L
—)(Odx+ /—cos _)idx

n = 0.
V L 2’Example

It is easy to see that the differential operatord2/dx2,i}c(O) = ifr(L) = 0, on the segment = ,, L na
(3.48)

from x = 0 to x = L leads to eigeafunctions (). fl > 0.

F-

/ 2 1nax The only significant difference between the two expansions is the interpretation of the
L L=
— sin —) (3.40)

equality at the boundary points x =0, L.

I
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Of course, when one says that any function can be expanded as an eigenfunction series,

the class or group of functions of interest needs to be specified (e.g.. functions that go to

zero at x = a and x = b. or functions that possess derivatives, etc.> In this text. anv/unctioiz

means any quantum mechanical state function 4f, and if we consider the operators encoun

tered in quantum mechanics (as discussed next), we will be able to form the expansion (3.30).

The eigenvalues could alternatively form a continuous, rather than a discrete. set,t In

this case, the eigenvalue problem will be denoted as

ifr(r.))

and the representation has the form of a continuous summation (integration), rather than a

discrete summation,

P (r) = fc 0.) l (r. .) d)...

a
—I—

on —oo <x <oc (i.e., with no “boundary conditions”) has ifr (x, ).) = as eigenfunc

tions,

= (3.52)

where any value of ). is allowed. In one dimension, functions can be represented as the

continuous sum of eigenfunctions

‘P (x) = — a

2 j

which is merely the familiar Fourier transform representation. The expansion coefficient

is the Fourier transform itself,

a (.)
=

‘ (x) e”dx.

3,1.4 Operators for Quantum Mechanics

Typical operators encountered in quantum mechanics will now be discussed. It is useful to

start by examining a plane—wave function of the fonu

(x. t) = Ae1_Et1.

Such eigenfunctions are sometimes called illzproper eigenfimctions.

and applying the operator

32

(3.49)

Example

The operator

(3.50)

(3.51)

(3.53)

(3.54)

(3.55)

I
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which happens to be a solution to SchrOdinger’s equation in one dimension if V = 0 and

E = — . (3.56)
2m

Momentum Operator. Considering first the spatial part of the function (3.55),

(x) = Ae, (3.57)

(3
7= —ui---— (3.58)

dx

to the function ji (x) leads to

—ihj (xl = —i1iAe’ = (x) = pfr (x). (3.59)
dx dx

where p = hk is the momentum, Therefore, (3.57) is an eigenfunction of the operator (3.58)
with momentum as an eigenvalue. Hence, (3.58) is called the momentum operator, written as

(3.60)
dx

Of course, there is nothing special about the coordinate x, and therefore we have momentum
operators in rectangular coordinates as

B a B
= —ifl—. , = —iii—. p- = —ih—. (3.61)

dx Br

In three dimensions. the vector momentum operator is

p = a, + a 5 + a- = —ihV. (3.62)

where in rectangular coordinates V = a (B/Bx) + a) (B/By) + a (B/dz).

Energy Operator. In the same manner, the operator

E = iii— (3.63)



is the energy operator. Considering the temporal dependence of (3.55),
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Commutation and the UncertaInty Principle. Recall that the Heisenberg
uncertainty principle in one dimension,

g (t) = eEt, (364)

L\pAx EE: 11/2, (3.74)
leads to

places a constraint on the product of the uncertainties in momentum and position. On
g (t) = ihg (t) = ihe_1Et hg (t) — Eg (t) , (3.65) page 38, the generalization to three dimensions was given as

at

and so (3.64) are eigenfunctions of the energy operator (3.63) with energy as eigenvalues. APx AX > h/2, (3.75)
As will be seen in Postulate 4, the energy operator (3.63) can be related to the Hamiltonian.

ApAy ?: h/2, (3.76)

Position OperatorS Now consider the position operator, i = x. Assume that a APz AZ > 11/2, (3.77)
particle is at position xa, and denote the position operator by i. Then

so that, for example, there is no problem with measuring momentum in one direction and
Ifr (x) = xi (x) (3.66) position in another. The question then arises as to when it is possible to have simultaneous

knowledge of two quantities, and the answer is obtained by considering operators.
must be true, such that Consider two observables, a and , associated with two operators, and , respec

xJ (x) = (x) . (3.67)
tively, and assume that we would like to measure and l for a given system 4J If we are
to be able to measure u and with arbitrary precision, then the measurement of c cannot

This should be true for all x, which means that (x) = 0 for all x x. The eigenfunction
influence 3, and vice versa. Therefore, if this is to be true, the order of the measurements

is taken to be the delta function, will not be important. Thus,

(x) = i(x,) =(x —x). (3,68)
= 13&’, (3.78)

which, technically, is not a true function, but a distribution. That is, the eigenvalue equation is
and so

x(x —xa)=x(x —xa). (3.69)
(3.79)

The delta function has the useful properties
The difference operator in (3.79) is called the commutator,

(3.70) [,3]=(—), (3.80)
b

— { f (x1), a <Xa 12,I (x — xa) f (x) dx
— 0, otherwise,a

b such that when the commutator of two operators is zero (the two operators are then said toI (x — x) dx = 1, a <X <b, (3,71) commute), the corresponding observables can be measured to arbitrary precision.
a

As an example, consider the position and momentum operators. For I and j3,oo

J edx=22t(x). (3.72)
- () =() -

a

,12—)xi
(3.81)

ax ax ax ax
Using these properties, we can see that, upon integrating both sides, the eigenvalue equation

(3.69) holds. ill. x ‘I’— x—’I’+’P
a

(aThe position operator I = x is Hermitian, and so its eigenfunctions form a complete = ( ax )) (3.82)

(continuous) set. Manipulating (3.70) gives the representation for any good function as
= (3.83)

‘P (x)
= f ‘P (x’) (x — x’) dx’, (3.73) and, therefore,

using x’ = xa.
[I, i5] = ih 0. (3.84)



Chapter 3 Quantum Mechanics of Electrons

So one cannot measure position and momentum along the -axis with arbitrary precision.

However, for the operators i and j. one obtains

((-4 - = (---) -
\ \ dyJ \ 3J J \ C3 \ d)J

= _i( (+0))

[]=o.

allowing the possibility of measuring position along the x-axis and momentum along the

y-axis with arbitrary precision. It can be easily seen that

forc=x.v.zwitha#.

3.1.5 Measurement Probability

The last part of Postulate 2 gives the probability of obtaining a certain measurement result

(a certain eigenvalue). From (3.14). if the system is already in state before measurement

(ku = fr,1), where 4r, is an eigenfunction of the measurement operator =

then (3.14) tells us that, with 100 percent certainty, the result of the measurement will be

since

= f(r.t)(r.t)d3r2

= fn(r,t)(r,t)d3rL =‘.

However, if the initial state of the system is not then the best that can be done

is to obtain the probability that the result of a measurement will be a certain . given by

(3.14). For example, assume that the initial state of the particle is

kII(r.t) =ai’l’i (r.t)+a2i1J2(r.t).

112

(x, t) = 2 (x, :3
= () sin () e1E2t,

and the probability that the electron is located at some position x is

56

and so

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3,91)

(3.92)

(3.93)
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which. using orthonormality. results in

P (.i) = 1(1112 . (3.94)

It it obvious that P (2) = ai2, and P = 0 for ii > 2 (thus, ai 2
a212 I must be

true).
However. regardless of the initial state, we do know with 100 percent certainty that

after a measurement. the system will be in the state ijc (the eigenfunction of ). So. if ve
want to obtain a system in a certain state, we can “prepare” this state by doing a measurement.

Example

Coming back to the example of an electron confined to a line segment between x = —L/2
and x = L/2. we assume that an electron is in the ii = 2 state. The state function is (3.9).

(3.95)

p (x) = jsin() C1E2t h8(x x)dx (3.96)

= sin (Txa)1 l (x, t)fL (3.97)

consistent with Postulate 1.

Collapse of the State Function — the Measurement Problem. Postulate 2
states that every physically measurable property of a system (any so-called observable) is
associated with a linear Hermitian operator, and that the result of every measurement is
one of the eigenvalues of the operator associated with that observable. That is. before
measurement, the state of the system may not be known, but after measurement (i.e..
observation), the system’s state will be an eigenstate ii,, of the operator associated
with the measurement, and that an eigenvalue must be obtained as the measurement
result.

In classical physics. the idea of a measurement is that one is measuring something
about the system the instant before the measurement is performed. For example. if the
velocity of a car is measured to be 80 km/h, it can be inferred that the instants before
and after the measurement was performed, the car was going 80 km/h. Thus, in classical
physics, when a measurement is performed, one is “taking a peek” into the system. and
it is assumed that the act of measurement does not perturb the system at least not too
much).

The view in the Copenhagen Interpretation of quantum mechanics is quite different. All
that we know about the system is its state after the measurement is performed. The instant

Then

=

=
[a1ij (r, t) +a2fr2 (r. t)] (r.
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before the measurement, the system is. most generally, in a superposition of states. The act

of measuring (observing), no matter how carefully and unobtrusively done, collapses the

superposition of states into a single eigenstate. This is called collapse of the state function. or

the measurement problem. This collapse is an instantaneous process. The wave function will

stay in the collapsed state until it is perturbed by the outside world, after which, depending

on the type of perturbation, it may revert back to a superposition state.

To further consider the collapse of the state function, let’s consider consecutive mea

surements of position and momentum. Let (x —
x0) denote a position eigenfunction, and

e’ denote a momentum eigenfunction. Further. note that any momentum eigenfunction

can be written as a (continuous) sum of position eigenfunctions.

= fc(e)(x —x0)dx0,

where c (x0) = e’1’ “Ti and that any position eigenfunction can be written as a (continuous)

sum of momentum eigenfunctions.

1
(x — x) = I d (p) e’dp,

27th J

where d (p) = 1. Therefore, if the system is in a certain momentum state, it is, equivalently,

in a superposition of position states, by (3.98). In a similar manner, if the system is in a

certain position state, it is, equivalently, in a superposition of momentum states, by (3.99).

Now say that the position of a particle is measured. Before the measurement, assume

that the particle wavefunction is a superposition of several position eigenfunctions, as in

(3.30). such that

‘P (x) = ‘P (x5) (x — x0) dx.
-

When the measurement is made, the wavefunction collapses into one of these eigenfunctions,

say, (x — x). the one corresponding to the measured position x. That is,

measure position
‘P (x)

= f ‘P (x0)(x —x0)dx0 (x — x).

P(x) = f’P(x)(x —x)dx = ‘P

If a further position measurement is made immediately afterwards, the wavefunction will

still be in the collapsed state, (.v — x), and so the same position (x) will be measured.

That is,

measure position
‘P (x) = 8 (x

—

x) 8 (x — x). (3.103)

Section 3.1 General Postulates of Quantum Mechanics

However, if immediately after this the momentum of the particle is measured. the
wavefunction will collapse to one of the momentum eigenfunctions (recall that the specific
position eigenfunction can be written as a continuous sum of momentum eigenfunctions).
corresponding to the measured momentum p. That is,

(x) = 6 (x — x) = —— f e1tI)dp
measure momentum

(3,104)
27th

with probability

P (p) = i: (x) e ipx/hdX = LL: 8 (x — r) e’dx = e”
h2

(3.105)
All values of momentum are equally likely, since the position is known exactly. That is,
the uncertainty in position is zero, and so the uncertainty in momentum must be infinite;
recall the uncertainty principle (2.39).

Further measurements of momentum will, with 100 percent probability, yield the same
value of momentum, and so the system would stay in the momentum state e1Px/,

kIt (s-) = et’°’5”
measure momentum eu1t/h1, (3.106)

until disturbed by an interaction with the “outside world.” If a still later measurement
of the position is made, because the particle is in a specific momentum state (a super-
position of position eigenfunctions), the position recorded by the measurement will once
again come down to probability, as the state function collapses to a certain position eigen
function.

The preceding description follows from the Copenhagen Interpretation, which, obvi
ously, engenders some philosophical problems. Other theories exist, each with their own
potential philosophical problems, although the details will not be presented here. However,
experiments have shown quantum systems existing in a superposition of states, and so this
is not merely a philosophical issue. As an interesting practical application, in quantum
cryptography, the collapse of the state function can be used to insure that data is securely
delivered to its destination over a network. This is because any detection of information, no
matter by what means, constitutes a measurement. This would cause the state function to
collapse, indicating that the data had been compromised. Such systems have already been
demonstrated in laboratory settings.

As another example, consider the two-slit experiment performed with electrons. Com
mon sense would indicate that the electron passes through one slit or the other to arrive
at the detector. However, quantum mechanically. before reaching the detector the electron
exists in a superposition of states, and only upon detection does this state function collapse
to a single state and a particle-like existence. If one were to try to measure which slit
the electron passes through, however carefully the measurement is performed, the double-
slit interference pattern would not he observed, since by performing this observation (i.e.,
measurement), the state function collapses. and the electron acts like a particle.
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(3.99)

(3.98)

(3.100)

(3.101)

(3.102)

In fact, position x is measured with probability
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POSTULATE 3. The mean value of an observable is the expectation value of the j and similarly for p and p, such that the three-dimensional momentum is obtained from

corresponding operator.

In classical probability theory. the mean (mathematical expectation) of a function f P) f (r. t) (—iV) (r. t) d3r. (31 15)

of a random variable x, p. = (f). is calculated from

From (363). the expectation value of energy is obtained as

(f) = I f (x) p (x) dx, (3.107)

(E) = f 4j* (r. t) (it) i Cr, t)d3r. (3.116)
-

at
where p (x) is called the probability densityfunction (pdf), such that

,\- In all cases, the wavefunction used in (3.1 10)—(3.l 16) is normalized according to (3.8).

I p(x)dx = I. (3.108)

Speaking loosely. the state function .I’ is the square root of the probability density Example
function for a particle, and so it might be expected that IJ2 will play a role in determining

expectation values of quantities. Since the wavefunction is, in general, complex-valued, Considering again the example of an electron confinedto aline segment between x —L/2

rather than the square of the function, we actually need the modulus squared, X L/2, with the state function given by (3.9), we find that

(
2)u!2 nit

p (r, t) = { (r. 1)12 (r. t) (r, t) . (3.109) {x, t) = sin (_x)e’t’. (3.117)

In general. for any physical observable 0, the mean of 0 (i.e.. the average. taken j L L

over many individual measurements under identical conditions, and with the same initial The expectation value of the particle is

state) is given by I L2

(x=J *xt)xxt)dx (3.118)

(o)=fP(rt)d3r (3.110)
-L/2

,nir

= f (r. t) (r. t)d3r. (3.111) 1
= LJ_LI2n (_x)dx (3.119)

=0. (3.120)

where is the operator corresponding to that observable. For example, the expectation value

of position (0 = r, = r)
That is. the average position of the electron is in the middle of the line segment. Note
that this is not necessarily the most likely location to find the electron. For example, for
the ii = 2 state 4’ peaks at x = ±L/4, which is the most likely place to find the electron,

(r)
= f ‘I’ (r, t)r (r, t)d3r, (3.112) althoughtheaveragepositionisstillzero.

POSTULATE 4. The state function 4J (r. t) obeys the Schrodinger equation
and in one dimension,

= (rt) (3.121)iii H4’
) fJ*(xt)4J(xt)dx (3.113)

The expectation value for momentum is where H is the system Hamiltonian (total energy operator).

The Hamiltonian is comprised of kinetic and potential energy terms (and terms cor

= f (r. t) (r. t) d3r, (3.114) responding to applied electric or magnetic fields if such fields are present). For a particle
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with masst , j the absence of applied electric and magnetic fields, However a considerable simplification occurs if the potential energy does not depend

-)
on time, which will be the case considered throughout this text. Assuming a product form

H = (_zV2 + v (r. t)) . (3.122) for the wavefunction,
2iii

where the first term corresponds to momentum and the second term is potential energy. It ‘
(r. t) = fr (r) g (t) , (3.127)

should be noted that the environment that a particle resides in enters Schrodinger’s equation

via the potential energy term V (r, t), and by the boundary conditions enforced on {J , which J and substituting into Schrodinger’ s equation results in

will be discussed shortly. II

I (_2h1f + V(r))
i()a

(3.128)

Example I

The left side of (3.128) is clearly, at most, a function of position r (but not time), and the
The state function for an electron confined to a line segment between x = —L/2 and right side is. at most. a function of time (but not position). How can a function of position
x = L/2 has been given as (3.9). but not time be equal to a function of time but not position, for all times and positions?

1’ 2 \ 1/2 They clearly cannot be equal unless each side is equal to the same constant, which will
(x. :3 = z) sin(yx) C

Et/h (3.123) be called E (because, although it is not proven here, this constant will represent energy).
Therefore,

for n even, with zero potential energy on the line segment. In this case, in one dimension

H = 3.l24)
(_V2 + v (r)) ir(r) = E4i(r) (3.129)

2e dx
dg (t)

and so it is easy to see that (3.121) is satisfied as long as E is defined as in (3.11). That is, i1i • = Eg (t) . (3.130)

plugging (3.123) into (3.121) leads to
dt

a 1/2 . nrr •E h’ h2 d2 (12 \I/2 nn E i’
The method of separating the time and space dependence in (3.126) is called separation of

ih srn (iX) e = sin (_x)e (3,125) variables . Notethat (3. 129) is really an eigenvalue problem, H = , where the operator
is the Hamiltonian (total energy operator),

or
2 I /h-

E=—t’-. I H=(———V+V(r)). (3.131)
2me\LJ \ 2m

and where the eigenvalue is the (usually unknown) energy E. For constant potentials, solu
tions of the time-independent Schrodinger’s equation are eigenfunctions of the Laplacian

3.2 TIME-INDEPENDENT SCHRODINGER’S EQUATION operator, V2, which for one dimension isd2/dx2.
The time-dependent equation (3.130) is easy to solve, leading to

Equipped with Schrodinger’s equation. and some understanding of the wavefunction, some
—E fl

simple problems involving quantum particles with mass can be formulated and solved. For g (t) = goe . (3.132)

a particle of mass in in a potential V (r. t), Schrodinger’s equation is
Notice that if (3.132) is compared with a general oscillatory form

t)
= (_V2 + V (r, t)) ‘P (r, t). (3.126)

g (t) = goe”°t, (3.133)

Photons. which are quantum particles without mass. can be represented as electromagnetic wave oscillators then it can be seen that
whose states obey (3.12 1> as well, although with a Hamiltonian different from (3.122). However, in light-materiaI

interactions, it is often sufficient to treat the electrons quantum mechanically and the photons as classical electro-
E — /1 3 134

magnetic fields. We will follow this procedure here.
— (1) (
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(x = aj = ku (x = a+)

112 d2

2flle dx

makes sense, which is nothing more than the previously stated energy—frequency relation
(2.12). Of course. this is not a proof that the constant E in (3.129) is the total energy. but
it turns out to be true.

From (3.127). a general time-dependent wavefunction for a particle in a tirne-indepen
dent potential is

kuJ(r.t)=iJ(r)e (3J35)

For the time-independent wavefunctions, the orthogonality condition is

I fr(r)fr1(r)d3r=0 (3.136) !

for i j ,
where i and j denote different energy eigenvalues.

7 112
——V + V (r) ) k[J (r) = E1ij (r), (3.137)

\ 2m

(_V2 + V (r)) (r) = Eji (r). (3.138)
2m

In summary, the time-independent Schrodinger equation is

7 1l
———V- + V (r) ) fr (r) = Eifr (r). (3.139)

\ 2m

where E is the total energy of the particle, which has mass iii. The time-dependent wave-

function is obtained from the time-independent waefunction as (3.135). In one dimension,

the time-independent Schrodinger equation is

7 112d2
I ——-———i + V (x) J 41(x) = Ekfr (x). (3.140)
\ 2m dx- /

where

41 (x, t) = 41(x) (3.141)

For time-independent potentials, the evolution of the state function is determined uniquely

in time upon specification of the initial state 41 x, 0).
It should be noted that Schrodinger’s equation (time dependent, or time independent)

is a linear homogeneous equation. As such, a superposition of homogeneous solutions 41
is itself a solution. Therefore, the most general state function for the separable case can be

written as

kII(r,t) = (r)e_tt h (3.142)

i.e., as an eigenfunction expansion, where 41,, are eigenfunctions of the Harniltonian operator

and a,, are weighting constants.
For example, a wavepacket can be constructed from a superposition of plane waves,

where each plane wave is a solution to Schrodinger’ s equation having a different wavenum

her k. The wavepacket is not associated with a specific energy. but with a range of energies.

I his is a general situation—one often cannot say that a particle has a definite energy, only

that the particle may have any of the possible energies occurring in the superposition, with

a probability proportional to the wavepacket probability. which is related to the amplitude

a,, of a particular plane wave having that energy.

3.2.1 Boundary Conditions on the Wavefunction

Before treating some simple problems, notice that Schrodinger’ s equation is a second-order

differential equation. and so boundary conditions need to be imposed on the wavefunction
kF, The boundary or connection conditions will be obtained in one dimension for simplicity.

A typical situation invohes considering two adjacent regions. region I for x < a. where

the particle has mass in i and “sees” a potential Vi . and region 2 for x > a. in which the

particle has mass and “sees” a potential V. It will be assumed that the quantity V —

is finite.
While it may seem that the particle should have the same mass in both regions, there

are many situations (especially for semiconductors, as discussed in Chapter 5) where the

particle has an effecthe mass that is different in different regions of space. By assuming

that the transition between regions occurs not abruptly at x = a. but over a small range of

x values, and then taking the limit that the transition becomes abrupt. it can be shown that

qi (x = aj = Ji (x = at). (3.143)

1 1
—ku1’(x=a )=ku1’(x=a+),

rni 1fl2

where 1J (x = a ) and ‘P (x = aj are the wavefunctions in regions 1 and 2, respectively.

infinitesimally close to the transition point x = a. and where ‘4J’ denotes the derix ative of

‘If with respect to x.

However, if V has an infinite step discontinuity, say. Vj is finite and V2 is infinite.

then only the wavefunction. and not its derivative, will be continuous at x = a,

(3.144)

Example

In previous examples. a one-dimensional space was considered, wherein an electron was
constrained to he in the range —L/2 x L/2, with V = 0. Here we collect the various
results concerning this example. and show the derivation of the state ftinction.t

Since V =0, Schrödinger’s equation (3,140) is

(3.145)

The confined region of space considered in this example is often called a quantum well or quantum box.
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which has the solution or

s(r
A sinkx + B coskx. — X

(3 146) n (x. t) () sin (x) etEt1 (3157)

o
for the odd solution (n even). The even solution is

where /212 nn r
k2 (3.147 pn (yr, t) z) cos(Tx)e

r’ i, (3.158)

It is easy to verify this solution by inserting (3.146) into (3.145). Continuity of the for n odd. These are the functions provided in the orina1 example on page 46.
wavefunction at x = ±L/2, i.e.. applying (3.144) at x = +Lf2, leads to Since k is discrete. the energy of the particle (in this case. the energy eigeuvalue) is

I L
found to he discrete.

J () — (—) —

0. (3.148)

, . . . 2 2 2k2&()2

(3.159)
and so it is obvious that either 2me 2’fle L

B = 0, = flu, fl = 0. ±1, ±2 (3.149) The momentum associated with any givenstate is

or h uk nrFp_=_=PA (3.160)
kL I 1\ L

A =0. = n+ )n. n 0,+1,+2 (3.150)
. 1 where the relation k 2t/) was used,

The wavefunction for —L/2 < x < L/2 is, therefore. From (3.113), the expectation values of the particle’s position and momentum are,

flt by Postulate 3,
1fn (x) A sin fl even (3.15 1)

L L/2

=Bcosx, nodd.
(x) j

(x.t)x(X,t)dX (3.161)
L -L2

which represents odd and even solutions with respect to the center of the space (x = 0). 2 1L/2
2 . d — 0 (3 16

Furthermore, note that (3.145) has the form of an eigenvalue equation Hs = Ei, 1 san
—

.

and therefore (3.151) are energy eigenfunctiOfls. These wavefunctiofls clearly exhibit
orthogonalitV I I . a

. Px)= I
y*(xt)j_zh 1(x,fldX (3,163)

e j.L/2 , \ inn J \ d.rj

I (X)41m(X)dX = A*A I (Sifl—X) sin—x)dx =0 (3.152) In
J J-LP L L . -

2 nrr I ‘- . ,‘liTt \ /fl7t \-
=

—ik—— I smi _xicosi—xIdx 0. (3.164)
L’ L L JL,1 \ L I \ L J

I -I un / -= B*B I COS —X) COS _x) dx — 0 (3.153)
J—L/2 L L Furthermore, for example. the odd cigenfunction (sine) can be written as

I l

= AB f(sinx) (cos x)dx = 0 (3.154) (x) = [+et
(3.165)

for in n in the first two expressions. and for all in, n in (3.154). The solutions can be — —

normalized according to (3.8),
—

1Lf2 1L ‘2
2 . 2

(See problem 3.8.) The term () is a plane wave propagating with positive (negative)
Mi (X)V dx

J—L/2
A sin Tx dx. (3.155) momentum. Thus. any particular state described by the sine function (eigeflfunCtiOfls0f

the Hamilton) can he thought of as representing a superposition of positive and negative
resulting in momentum states (eigenfunctiOfls of the momentum operator). See the comment about

/2 1/2 different representations of the state function on page 50. The same comment naturally
i1i (x) = sin TX.

(3.156) applies to the cosine eigenfunctiOfl.



The previous example is one of the simplest quantum mechanical problems that can

he sol ed. This problem will he re isited in considerable detail in the next chapter. It shows

that if a particle is confined to a finite region of space. its wavefunction forms standing

waves and the possible energy levels that it can occupy are discrete. In a two-dimensional
space. one can consider an analogous situation of a circular boundary at r = a and solve
Schrodinger’s equation in a circular region r < a, subject to fr = 0 for r a. The solution

involves Bessel functions and will not be discussed here, although the result is a standing

waxe pattern in the radial direction. Assuming that the particle in question is an electron, we
can consider these to be standing electron waves, which have been experimentally observed

in a structure called a quantum corral. The corral is formed by moving atoms on the surface

of a material to form a boundary, setting up an electron standing wave pattern, as shown in

the figure at the beginning of this chapter. In Fig. 3.1, the various panels depict assembling

the corral from iron atoms on a copper surface, and the resulting electron standing waves are
obtained by radial interference. Imaging is done using STM. In Fig. 3.2. a similar structure

called a stadium corral is shown, and other shapes are possible.

Figure 3.1 Evidence for the existence of electron waves—electron waves on the surface of copper,
imaged by STM. The waves are trapped by a ring of iron atoms, which were manipulated into
place using an atomic force microscope. (Reprinted with permission from Crommie, M. F.. C. P.
Lutz, and D. M. Eigler. “Confinement of Electrons to Quantum Corrals on a Metal Surface,” Science
262 (1993): 218—220. Courtesy IBM Research. Almaden Research Center. Unauthorized use not
permitted.)

Figure 3.2 Stadium corral made from iron atoms on a copper surface. Ripples are due to the standing
nave patterns of the electron density distribution of quantum states. (Courtesy IBM Research, Almaden

Research Center. Unauthorized use not permitted.)

3,3 ANALOGIES BETWEEN QUANTUM MECHANICS AND CLASSICAL

EL LCTROMAGNETICS

For students already familiar with classical electromagnetic theory. it is worthxshile to point

out briefly some analogies between Schrodinger’ s equation and the equations describing

electromagnetic naves.
Maxwell’s equations describe classical electromagnetics waves, and for a vacuum,

Maxwell’s equations are

V . E(r. r) = p(r. t)/En.

V x E(r, t) = _LB(r t),

Li
V x B(r, t) = itoeo—E(r. t) + ttoJe(r, t).

Lit

where E is the electric field intensity (V/rn). B is the magnetic flux density (Wb/m2), Pe

is the electric charge density (C/rn3), Je is the electric current density (A/m2), e0 is the

permittixity of vacuum E 8.85 x l012 F11m). and t0 is the permeability of vacuum

4t x iO H/rn). and where V stands for volts. C for coulornbs. Wb for wehers. A
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V B(r, t) = 0. (3.166)
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tangential electric field. Solving (3. 170) subject to Etan (S) 0 leads to discrete values of

k1wE and, hence, discrete resonant frequenciesTw, . Aside from the difference arising from
the vector nature of E and the scalar nature of W , the mathematical solutions for 4i and for

E will be the same.
Furthermore, in quantum mechanics ‘4’ 2 is a probability density, and provides the

likelihood of finding a particle in a certain location at a certain time. If IP (r. t)12 is large

at a certain (r, t), then it is more likely to find the particle there. In electromagnetics,

IE (r, t)j2 is related to the intensity of the field, and, viewed from a photon standpoint,
where jE (r. t)j2 is large, there are a large number of photons present at (r, t). Viewed
quantum mechanically, there is likel’ to be a large number of photons present at (r, t) when

IE(r,t)12 is large.
Many more analogies are possible, although these will not be discussed in detail here,

For example, one analogous situation will arise later when quantum wires are considered.
These structures lead to discrete modal solutions of Schrodinger’ s equation, similar to elec
tromagnetic modes of a conducting or dielectric waveguide in classical electromagnetics. In
fact, these structures are often called electron waveguides.

3,4 PROBABILISTIC CURRENT DENSITY

In electromagnetic theory, Je in Maxwell’s equations (3.166) represents electric current den

sity. Current I flowing through a conductor is classically obtained from the current density as

I=fJ.fidS. 3.173)

where S is the cross-sectional surface through which we want to determine the current

(charge movement), and 11 is a unit amplitude vector normal to the surface (such that Je ‘
is the component of current crossing the surface, as depicted in Fig. 3.3.)

Recall also that electrical current is the flow of electrical charge q (often, but not
necessarily, electrons).

An important equation that demonstrates that charge conservation is embedded in

(3.166) is known as the continuity equation. Taking the divergence of Ampere’s law, we have

aD
OVVXHVJe+VT (3.175)

noting the vector identity V V x A 0 for any vector A. Upon interchanging the spatial
and temporal derivatives, and invoking Gauss’s law, we obtain the continuity equation

V ‘Je (r, t) =
— dpe(r, t)

(3.176)

for amperes, F tor farads, H for henrys, and m for meters. For dimensional analysis. C =
A s = F . V and Wb = V s = H ‘ A, where s stands for seconds. The equations are known,
respectively. as Gau s ‘s law, the magnetic Gauss ‘ law, Faraday ‘s law, and Ampere ‘s law,

Wave phenomena are predicted from Maxwell’ s equations by suitable manipulation.
For example, taking the curl of Faraday’s law, and using AmpCre’s law, we have

If
2

V x V x E(r, t) = — (LoEoE(r, t) + so-Je(r, t>) . (3.167)

If we assume that for any position and time of interest the electric and magnetic currents
and charges (the sources of the field) are not present, then

82 1
—E(r, t) = —V2E(r, t), (3.168)
at iiot,o

nhere the sector identity V x V x A = V (V ‘ A) — V2A, for A, a general vector, was used.
There is obviously some similarity between (3.168) and Schrodinger’s equation for a

partkJe of mass n in the absence of a potential,

aw
ill =__V2i(r t) (3.169)at 2rn

although the presence of the second time derivative in (3.168) is actually quite an important
distinction Howes er, if an oscillatory time variation e is assumed for the electric field
(corresponding to a radian frequency o) and for the wavefunction (corresponding to the
form (3.135) with E = /1w), then

V2E(r, t) = —kEE(r, t) (3.170)

for the electromagnetic field. Also.

V2 (r, t) = 5E’I (r, t).

for Schrodinger’ s equation, where

2mE
= wpr, = —-—. (3.172)

are in each case simply constants. (E on the right side of the equation for k5 is energy, not
electric field.) In this case, the equations governing the electric field and the Schrodinger
wavefunction have the same form.

If a particle is bound to a certain region of space Q, then outside of Q, the wavefunc
tion will be iero, and at the boundary S of the region IJ (5) = 0. Thus, one would solve
(3.17 1) subject to ‘P (5) = 0, leading to discrete values of ksE, and, hence, discrete energy
levels F0, as obtained in the example of page 65. In an analogous manner, if a perfectly
conducting electromagnetic cavity were considered, then Etan (5) = 0, where Etan 5 the

(3.171) dq(t)
1=

at
(3.174)

tJfl fact, this really relates to photons having discrete energy sia E = 11w,,.
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—i 11.
J(r, t) = -a-— (i’ (r. t) V’4’ (r. t) — I’ (r, t) Vl’ (r, t))

is called the probability current density. Multiplying by the charge q, we interpret q p and qJ
as the probabilistic charge density and probabilistic current density, respectively, associated

with the charget q. The unit of probability current density is probability/m2s.

The normalization condition (3.8) leads to

space

qfr*(rt)sfr(rt)d3r=q,

It is easy to see that

a a a
dt

(511* (r, t) 51’ (r, t)) = ‘P (r, t) (r, t) + (r, t) _51j* (r, t),

From (3.126).

(3.179)

i3l’(rt) 1/ 1i2 2=---f——V +V(r.t))11(r,t),
dt lIi\ 2m

04J*(rt) 1 1’ 1z2
=
- ( —-—V + V (r. t) I

51j* (r. t).
dt —i/i \ 2i;i

assuming the potential V is real valued. Substituting into (3,179), we have

(51i (r. t) (r, t)) = i (11 (r, t) V2’l1 (r. t) — W (r. t) V2W (r. t))

Using the vector identities

(3.180)

(3.181)

Figure 3.3 Current density incident on a surface S.

(3.182)

Often it is useful to take the volume integral of (3.176). leading to

f 1 1 dPe (r. t) d
IV’J(r.t)d=1Jnd1=—I dr=——Q(t).

j ,j- dt di’

(3.183)

where the divergence theorem was used,

V’(aA)=A•Vci+aV.A.

V . Vu = V2a,

where a is a scalar and A is a vector.

d(*(rt)51f(rt))
= V. (3.184)

iit 2,iz

Comparing (3.184) with (3.176), and recalling that

p (r. t) = 5lJ* (r. t) 51’ (r, t)

is a probability density, we can recognize (3.184) as a conservation equation,

8p (r. t)
= —VJ(r,t),

(3.177)

where

(3.178)fV A d3r=A d2r.

where S is the surface of Q and i is a unit vector normal to the surface. The physical

interpretation of (3.177) is that the net outward flux of current from a volume Q bounded

by a closed surface S must equal the time rate of decrease of charge Q within the surface.

In quantum mechanics, we are often concerned with the location and movement of

particles, which are described by the wavefunction, The flow of quantum particles can he

considered using the following development, which will result in a relationship analogous

to (3.176).

(3.185)

(3.186)

(3.187)

in agreement with q4i*ib being a charge density. the integral of which provides the total charge.
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H2 =
21112 —

From (3.187), we can appreciate that l’ is often complex valued—if W is real valued,

there is no net current. In contradistinction, in classical time-harmonic (sinusoidal steady

state) electromagnetics.

Je (r. t) = Re {Je (r)elwt},

resulting in a real-valued quantity. In classical electromagnetics. as in sinusoidal steady-

state circuit analysis, the use of complex phasors and the complex time-variation ebout

is merely for convenience. In quantum mechanics, the use of complex quantities is a

necessity.
To aid in the interpretation of (3.187), it is useful to refer again to the electromagnetic

case. Consider the flow of classical electrons in the x direction, crossing the y—z plane,

where we assume that the current density is independent of x. Je = Je (y, c. t). Then, the

current at time t crossing the v—z plane is

I (t)
= f fJe (v, z, t) a dydz. (3.189)

in a similar manner, in the quantum mechanical case

1(t)
= f fqJ(v. , t) . a1 dvdz (3.190)

is the probability current at time t crossing the v—z plane. This expression will be used later

in describing electron transport through materials. (See, e.g., Section 10.2.3.)

Example

Assume a plane—wave wavefunction

‘I’ (x, I) = Ae’’’”. (3.191)

The probability current density is

J(r,t)= h(1,*(rt)V1II(r,t)_W(r,t)V*(r,t)) (3.192)

= -j---ax Al2 (e_ntTh_ (eitut) (e_u1tTh)) (3.193)

=axlAl2=lAl2=lAl2f =lAl2v, (3.194)
in in in

where (2.15) was used. Therefore, in this case, the quantum current density is merely the
product of the particle’s probability density and the particle velocity.

3.5 MULTIPLE PARTICLE SYSTEMS

For much of this book. we will need to consider only the single particle Schrodinger

equation, as presented in previous sections. With typically on the order of 1022 electrons per

cubic centimeter for many materials, this should seem like a rather coarse approximation!

To understand why the Schrodinger equation for a single particle is often adequate, we need

to first examine how to model a system containing multiple particles.
Consider the case of two particles, particle 1 and particle 2. Recall that the state

function describes the state of the system, which in this case is comprised of both particles.
Therefore. the state function must depend on both particles,

4J (r1, r2. t), (3.195)

where r1 and r2 are the ‘positions” of particles 1 and 2, respectively, in the following sense,

l’J’ (r1, r2. t)12d3r1d3r2 (3.196)

is the joint probability of finding particle 1 in the vicinity d3r1 of point r1, and simultaneously
finding particle 2 in the vicinity d3r2 of point r2.

The state function obeys (3.121).

N’ (r1, r-,, t)
ih =H’I’(r1.r7,t). (3.197)

where H is the system Hamiltonian that has the form

H=Hl+H2H-H12. (3.198)

In (3.198). H1 is the Hamiltonian for particle 1 by itself, H2 is the Hamiltonian for particle 2
by itself, and H12 represents the interaction between the two particles.

As an example, consider two charged particles in an otherwise empty space. Then,
from (3.122),

H1 = ——-—-V. (3.199)
2m i

qiq I
H12 =

4nro 1r1 — r21
where V-2 indicates the Laplacian in terms of each particle’s coordinates,

d2 2 82
(3.200)

8x? 8y, E1z

for particle i, and where r, = (xi, y, z), i = 1.2. In (3.199), H12 is merely the electro
static Coulomb interaction between the charged particles, i.e., the classical term for particle

interaction.
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Bitji (r1. t)
iii = H1’TJ (r1. t)

at
(ri. t)

ih. - - =Hi’41(ri.t).

The two-particle wavefunction, 4! (r1 . r2. t). is said to exist in a six-dimensional con-

figuration space. That is. particle 1 is described by three coordinates. and likewise for
particle 2 (plus a time coordinate). For N interacting particles. one must consider a 3N

dimensional configuration space. It is easy to see that the complexity grows rapidly with
increasing the number of particles.

However, a vast simplification occurs if N particles are present, but if the parti

des do not interact with each other, Returning to the two-particle system, in the limit of
noninteracting particles 2 = 0), Schrodinger’ s equation becomes

IN’(r1 r t)
ih

3t ‘ =
(Hi+H2)’1’(rl,r2.t), (3.201)

By setting

‘Ii (rj. r2, t) = ‘hi (r1, t) 12 (r, t) . (3.202)

we obtain two independent single-particle equations,

(3.203)

(3.204)

both of which can be solved independently of the other. Thus, for a system of N nonin

teracting particles one need “only” solve N single-particle equations. However, often the

particles in question are identical (say, the 1022 particles in each cubic centimeter are all

electrons), and indistinguishable (as explained in the following discussion). In this case, all
1022 equations are identical. and we only need to solve one single-particle equation. It is

for this reason that often we only need to consider the single-particle Schrodinger equation,

The simplicity gained by a one-particle approach, compared to a multiparticle approach,

cannot be overestimated.
of course, the validity of the single-particle Schrodinger equation relies on some

assumptions that may appear questionable. First, it was assumed that the electrons don’t

interact with each other. One reason why electron-electron interactions may be ignored,

as a first approximation. could be that the electrons are initially very distant from one

another. Then, although the “system” really consists of all of the electrons, it is reasonable

to assume, since the electrons are very far apart, and since the Coulomb potential between

electrons varies as the reciprocal of distance, that the electrons don’t influence each other,

Then the single-particle Schrodinger equation can be solved for each particle (N indepen

dent equations for N different particles, or merely one equation if all of the particles are
identical), obtaining the wavefunction. Often, in this case, the individually obtained wave

functions are called orbitals, to distinguish them from the exact quantum state of the system.

Each orbital will be a wavepacket concentrated where the likelihood of finding the electron

is high. If electrons are brought closer together, at some point the individual orbitals will

begin to overlap significantly. At this point the electrons will interact, and we may need to

account for this interaction.
However, what about solid materials. where the electron density is on the order of 1022

electrons per cubic centimeter? In this case, the assumption of electrons being distant from

each other clearly ill not hold. In solids. one would expect that. with so man electrons
present. they would be frequently bumping into each other. Amazingly. in many materials
the assumption of noninteracting electrons is quite good. In general. this is a consequence of
what is known as the screening effict: the electrons screen, or shield themselves. from each
other. This is, in turn. related to the Pauli exclusion principle. Each electron repels the other
electrons due to ( 1 ) the classical electrostatic repulsion (Coulomb interaction) between like
charges, and (2) the exclusion principle. which says that electrons with the same spins tend
to avoid each other, Because no two electrons can be in the same state. electrons with the
same spin will not have a high probability of being located near each other. Thus, electrons
tend to move through a material somewhat independently of the other electrons.

If we are truly talking about a collection of electrons in an otherwise empty space,
then the electroiv—electron noninteracting assumption is all that is needed. However. we
are often interested in solids. and so you might ask. what about the other atomic particles
(the protons. neutrons. etc. ). that make up atoms. which. in turn, make up the solid? They
are. after all. quantum particles themselves. and therefore the system in question contains
nonidentical particles. and we seem to be back to the multiparticle equation. It turns out that
in cr stalline materials. the so-called background lattice. which is everything associated with
the regular array of atoms in a crystal except certain (outer shell) electrons that have been
ionized. does have an important effect on the electrons. To be more specific. if the lattice is
perfectly periodic. waves can pass freely through the structure at certain energies. whereas
waves at other energies sill not propagate. This leads to the concept of band theory and
effective mass. which will be discussed in detail in Chapter 5. However, we can state at
this point that band theory allows us to account for the lattice in a simple manner, via an
effective mass in Schrodinger’s equation, with the end result that we can solve the single-
particle Schrddinger’s equation in this case without treating the quantum particles that make
up the background lattice individually. Again, the simplification provided by this approach
cannot be overestimated. Howeser, any disruption of perfect periodicity in the lattice. due to
imperfections. thermal vibrations. etc.. tends to scatter electrons. and must be accounted for
separately.

Pauli Exclusion Principle. The consideration of multiple indistinguishable par-
tides also provides some insight into the Pauli exclusion principle. Note that classical
particles that may be identical are. nevertheless. distinguishable. Consider. for instance.
identical bowling balls. One could mark each ball with a number or paint spot. thus mak
ing the balls distinguishable, without altering their properties. Systems consisting of large
numbers of distinguishable particles follow Boltzmann statistics (page 268).

However, electrons are both identical and indistinguishable. Systems consisting of large
numbers of indistinguishable particles follow either Fermi—Dirac or Bose—Einstein statistics
(pages 268—269). Large numbers of indistinguishable particles that obey the Pauli exclu
sion principle follow Fermi—Dirac statistics, whereas indistinguishable particles that aren’t
bound to the exclusion principle follow Bose—Einstein statistics. In the following discussion
a somewhat casual development of the Pauli exclusion principle for two particles is provided.

If two particles are indistinguishable. although perhaps interacting, then

(r1. r. t)2d3r1d3r2 (3.205)
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is the probability of finding one particle in d3r1 centered at r1 and one particle in d3r2

centered at r2. Since the particles are indistinguishable, the coordinates r1 and r2 are used
simply because there are two particles—it is impossible to say which particle is which, This
means that we must have

(r1. r, t)12 = I (r2. r1. t)12. (3.206)

Wavefunctions that satisfy (3.206) include the symmetric case

and the antisymmetric case

‘1J(r1.r.t)=lJ(r2r1.t). 3.207)

‘P(r1,r2,t) = —‘II(r2,r1,t). (3.208)

The antisymmetric case (3208) admits an interesting interpretation relevant to electrons.

Consider the special case r1 = r. Then. to satisfy (3.208). we must have

‘41(r1.r1.t)=0. (3.209)

such that the probability of finding two such particles within the same small volume d3r1 is
zero. It turns out that electrons obey this constraint, such that only one electron can occupy

a certain state. This rule, which applies to fermions, is the Pauli exclusion principle.
More generally, the Pauli exclusion principle states that particles with halfintegral

spin quantum numbers (fermions; electrons, protons, neutrons) must have antisymmetric
state functions, in the sense that a pairwise interchange of particles merely changes the sign
of the state function, as in (3.208). Particles with integral spin quantum numbers (bosons;

photons) must have symmetric state functions. (3.207).
If two fermions are considered, each of which satisfies a single particle state and

fri. respectively, then the composite wavefunction

‘‘ (rj, r) = (i (r1) fr2 (r2) — ji (rfl) J2 (r1)) (3.210)

will satisfy the antisymmetric condition (3.208). In a similar manner, for bosons, the wave-

function

1 (r1. r2) = —z (‘fri (r1) 112 (r’) + ,fr (ri) (rj)) (3.211)

will satisfy the symmetric condition (3.207).

3.6 SPIN AND ANGULAR MOMENTUM

As described previously, quantum particles have an intrinsic property called spin that has no

classical counterpart. The name actually derives from early interpretations of experiments

= V (i . B)

where electrons acted as though they were, in addition to orbiting the nucleus in an itoin.
spinning about their own axis. However. it was quickly understood that this as not the

case. Spin is a purely quantum phenomenon that cannot be understood by appealing to
eseryday experiences—it should be regarded as just another property of quantum particles.

The Stern—Gerlach experiment in the early 1920s demonstrated the existencc >1 spin.
although spin was not known at the time and the experiment sas performed for other

reasons. Recall from classical electromagnetic theory that the force on a particle having

charge q moving with velocity v in the presence of an electric field E and magnetic field B
is given by the Lorentz force law,

F1 =q(E+vxB). (1.212)

Now assume that the electric field is not present, and consider passing a particle
through a magnetic field, If the particle in question is charge neutral (q = 0), such as a

nonionized atom, then it should suffer no Lorentz force deflection. Hossever. another force

may influence the particle. If the particle has a net magnetic inoment ji. then in passing
through a magnetic field B, it will experience a force

. (3.213)

Assume that the particles are moving along the y coordinate, the magnetic moment i

constant, [J. = +ap, and that the magnetic field is B = aB (v). Then.

Fr =±a\dBi, (3214)

so that the particles will he deflected in the ± direction if the magnetic field is a function of

: (i.e.. not constant along v). The sign is chosen according to the direction of the magnetic
moment Vector.

In the Stern—Gerlach experiment, the atoms d.c.. chai’ge-neutral quantum particles
are in the lowest energy state (as discussed further in Section 4.6. such that the electrons do
not have any net angular momentum associated with electrons orbiting the nucleus, Thus.
the magnetic moment of the atom should be zero. Since neutral aton s in the luwcst energy
state are used, FL = Fn 0. and, thus, the trajectory of the atoms should not be changed in
passing through an inhomogeneous magnetic field. However, in the SternGerlach exper
iment, it is found that the original beam of atoms splits into two components. One pan

of the beam is deflected in a certain direction (say, +aJ. and the other part of the beam
is deflected in the opposite direction (—a1). Thus, the atoms act in a manner that would

be consistent with having a magnetic moment. Thus, the idea arose that electrons have an
intrinsic magnetic moment, positive or negative but equal in magnitude. called spin. It can

Magnetic moment shouldn’t be confused with magnetic permeahilitr. also denoted in p. The magnetic

moment of a current loop. i.e. a circulating charge. is i = IA here I is the current in the ioop, .t is the

cross-sectional area of the loop, and & is a unit sector normal to the loop’s cross section. chosen to be in the

direction gisen by the right-hand rule The total magnetic moment of an atom is doe to angular momentum (orbiting

electrons forming small current loops) and spin.
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be shown that the nuclei also have spin, which results in fine structure in the experimental • the general timedependent and time-independent Schrodinger equations, and how to

results. but that the main effect is due to the electrons. Also. although the results could solve these equations in simple regions of space;

seemingly be explained classically if the electrons were spinning about their own axes, it • the concept of the probability current density;
can be shown that this is not the case. • the analysis of multiple particle systems. screening. the Pauli exclusion principle, and

Spin is quantiLed, taking either integral or half-integral alues of h. As mentioned the concepts of spin and angular momentum.
in Section 2.43. particles with integral (in units of ) spin are called bosons. and particles

with half-integral (in units of 1i spin are called fermions.

Although not related to spin per se. recall that classical particles can possess angular
3.8 PROBLEMS

momentum.

L = r x p, (3,215) 1. For the matrix operator L = [ ]. show that eigenvalues and eigenvectors are

where r is the particle’s position xector and p is the particle’s linear momentum. A good r o
example is a particle in a circular orbit, such that 2, = 1LaJ

L=a-mvr. (3216) r —7(3 1
k=—5. x=[

3

where a- is a unit vector normal to the plane formed by r and p (following the right-hand

rule). in is the mass of the particle. r is the particle’s linear velocit, and r is the radius of here u. l 0. That is. show that the preceding quantities satisfy the eigenvalue

the orbit. Recall that. in the absence of external forces. angular momentum is conserved. problem Lx = x.

which explains why an ice skater spins faster as the skater’s arms are lowered: r is reduced 2. Consider the set of functions {_euui, ii o. ±i, +2. . . .J.so that v must increase to maintain a constant angular momentum. -‘

Whereas classical objects do not hae any intrinsic spin. they do have angular momen- (a) Show that this is an orthonormal set on the interval (— rt).

tum, although, perhaps not unexpectedly, in the quantum theory, angular momentum is (b) On the interval (—rr/2, rt/2), is the set an orthogonal set, an orthonormal set, or

quantized in integral units of h, including 0 (,e., 0, h, 2/i. Mi, . . .). Therefore, a quan- neither?

tuill particle in general has both quantized spin and quantized angular momentum, Elec- 3 Consider the set of functions {/sin(nx) n = 1. 2. . . .} on the interval (0. t).
tronics based on the transport of spin. rather than the transport of charge. will he dis

cussed in Section 10.4. Spin is also important in magnetic resonance imaging {MRI) (a) Show that this is an orthonormal set.

technologies. (b) Determine an operator (including boundar conditions) for which the preceding
set are eigenfunctions. What are the eigenxalues?

3, For the differential operator L = —d/dx2,u (0) = a (a) = 0. determine eigenvalues
3,7 MAIN POINTS and eigenfunctions u. That is. solve

In this chapter, the fundamental principles of quantum mechanics have been presented in Lu =

simplified form. After studying this chapter. you should understand the four postulates of

quantum mechanics, and related ideas. In particular, you should know where u (x) is a nonzero function subject to the given boundary conditions. Normalize
the eigenfunctions. and sho that the eigenfunctions are orthonormal.

• the meaning of the state function: Repeat problem 3 .4. but for boundary conditions ii ‘(0) = u ‘(a ) = 0. where a’ = du/dx.
. how to calculate the probability of finding a particle in a given region of space: 6. Assume that some observable of a certain system is measured and found to be k,,
• how to determine the probability of measuring a certain observable. ,: for some integer ii. By Postulate 2. we know that immediately after the measurement,

• the concepts of operators. eigenvalues. and eigenfunctions. and how to solve elgen- the system is in state .fr,1. which is an eigenstate of the measurement operator (i.e.,

value problems based on differential operators: where =

• the important quantum mechanical operators associated with momentum and energy: (a) What can we conclude about the system’s state immediately before the

• how to determine the expectation value (mean) of an observable; measurement?
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(b) Assume that the identical measurement is then performed on 100,000 identical
systems, and each time the measurement result is the same, . What can we infer
about the system’s state immediately before the measurement?

7. Assume that an electronic state has a lifetime of 10 8 s, What is the minimum uncer
tainty in the energy of an electron in this state?

8. In the example of solving the one-dimensional Schrodinger equation on page 65. we
obtained the state functions

4r (x)
=

sin (TX). fl even,

( )22 nn
=

— cos I —X 1, n odd,
L \L J

are eigenfunctions of the second derivative operator d2/dx2, and where energy eigen
values were found to be

h2
= — I —

2m \ L

(a) Show that the odd eigenfunction (sine) can be written as

1 r i 1
fr (x) = [e —

=fr+--

where

(3.217)

Show that the expectation value of position as a function of time is

16L /3h2
(X)——COS ———t92 2mL2

Interpret this solution, compared with the expectation value of position for a single
stationary state

,
which is time independent.

9. Since Schrodinger’ s equation is a homogeneous equation, the most general solution
for the state function is a sum of homogeneous solutions (3.142),

‘If (r, t) = a4r (r) e zEt1h (3.220)

Show that if ‘P (r. 0) is known, then an expression for the weighting amplitudes a,1
can be determined, Assume that the eigenfunction tfr,2 forms an orthonormal set. Hint:
Multiply

‘I! (r. 0) = a4r (r) (3.221)

by (r) and integrate. What is the interpretation of ja 2?

10. Consider a particle with time-independent potential energy, and assume that the initial
state of the particle is

‘I’ (r, t) = a1ij1 (r, t) +a2fr2 (r, t),

such that P (X1) = jail2 = Pl, P R) = 1a212 = P2, and ja1j2 + ja2j2 = 1. Show that

(E) = Pi (E1) + P (E2).

11. For the example of solving the one-dimensional Schrodinger’s equation on page 65,
determine the probability of observing the particle very near the boundary wall, x =

+L/2. If the particle is in the n = 2 state, where is the particle most likely to be found?

12. For the example of solving the one-dimensional Schrodinger’s equation on page 65,
assume that the particle is in the a = 2 state. What is the probability that a measure
ment of energy will yield

h2 /22
=

— I — I?
2m \ U

What is the probability that a measurement of energy will yield

2 /32

E3 = — I — I?
2m L J

(3.218)

‘h (3.219)

and determine a similar relation expression for the een eigenfunction. The term

‘fr+ (r) represents a wave propagating with positive (negative) momentum.
Thus, any state described by sine and cosine can be thought of as representing a
superposition of positive and negative momentum states.

(b) Although the decomposition of a standing wave into two counterpropagating
waves, as in part (a). is useful, it can be misinterpreted. Since the probabil
ity density fr (X, t) iji” (x. t) is independent of time, the expectation value of
position, (x), is independent of time, and so, really, we should not think of
the particle as “bouncing” back and forth in the confined space (otherwise, (x)
would be a function of t). Determine the expectation value of momentum, using
either (3.217) or (3.219). and discuss your answer in light of the preceding
comment.

(c) Assume that the particle is in a state composed of the first two eigenfunctions,

1 L1t /212 2n \ E2t
r (x, t)

=

cos (_) e’ + sin (TX) e
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Chapter

4
FREE AND CoNFINED ELECTRONS

rdectron and X-ray diffraction image of dumbbell-shaped clouds of electrons shared by covalent bonds
between copper and oxygen atoms in cuprite, C20. The nuclei of the copper atoms (not shown) are
at the center of the dumbbells, and those of the oxygen atoms (also not shown) are at the center
and corners of the superimposed cube. The fuiiy clouds are less defined electron clouds representing
cm alent bonds between the copper atoms. (From JM. Zuo, M. Kim. M. O’Keeffe, and J,C.H. Spence,
\/ature 401, 49—52 (1999). Used by permission.)

In the last chapter, Schrodinger’s equation was introduced, along with the basic ideas of
quantum mechanics, In this chapter, some examples of solving Schrodinger’s equation are
presented relevant to understanding physical phenomena associated with electrons confined
to nanoscale regions of space. including quantum dots, wires, and wells. The chapter begins,
however, with a discussion of free (unconfined) electrons, in part to provide a comparison
to the bounded space result,

13. Consider a quantum encryption scheme using photons. Assume that a photon can

only exist in either state I. 4ri , having energy E1 . or state 2, rji2, having energy E2,

or in a superposition of the two states, ‘I’ = arfri + brfr2. Assume that the states are

orthonormal.

(a) If a photon exists in the superposition state P = asfri + bi4i2, what is the relation-

ship between a and b?
(b) If a photon exists in the superposition state ‘P = arfri + br2, determine the prob

ability of measuring energy E2. Show all work and/or explain your answer.

(c) If the photon in a superposition state is sent over a network, explain how unde

tected eavesdropping would be impossible.

14. In Chapter 6, the reflection and transmission of a particle across a potential barrier

will be considered, For now, assume that a potential energy discontinuity is present

at x = a. and that to the left of the discontinuity, the wavefunction is given by

W (x, t) = (e’ + Re ik) e iEt/h

and to the right of the discontinuity

I1 (x, t)
= TCZCx c_lEt/h

where R and T are reflection and transmission coefficients, respectively, which will

depend on the properties of the different regions and on the discontinuity in potential

at x = a. Determine the probability current density on either side of the discontinuity.

15. In the example of solving the one-dimensional Schrodinger’ s equation on page 65,

we obtained the state functions

(x, t) = 4r (x) et 1

where

/212
4r (x) = Sifl (TX), n even,

/2\1/2
= I — I cos I —x I, n odd,

\LJ \L I

and where

E = — I—
2m \ L

Determine the probability current density. Discuss your result.

16. Assume that the wave function

‘fr (z, t) = 2OOeb0t)

describes a beam of 2 eV electrons having only kinetic energy. Determine numerical

values for k and w, and find the associated current density in A/m.
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