
18. For a 15 electron in the ground state of hydrogen, determine the expectation value
of energy.

19. For an electron in the (n, 1, m) = (2, 0, 0) state of hydrogen, determine the expecta
tion value of position.

20. Repeat problem 4.19 for an electron in the (n. 1, in) = (2, 1.0) state of hydrogen.

21. For an electron in the (ni, n = (1. 1) subband of a metallic quantum wire having
= = 1 nm, if the total energy is I eV, what is the electron’s longitudinal (i.e.,

z—directed) group velocity?

22. A 3 eV electron is to be confined in a square quantum dot of side L. What should
L be in order for the electrons energy levels to be well quantized?

Chapter

5
ELECTRONS SUBJECT TO A PERIODIC

POTENTIAL — BAND THEORY OF

SOLIDS

In the previous chapter. we considered several different environments, including infinite

and finite spatial regions, and we solved Schrodinger’s equation to determine the possible

allowed states for a particle in these environments. In this chapter we continue to use these

ideas. but here we consider an electron in a crystalline material, leading to the important

band theory of solids. It is hard to overestimate the importance of band theory. It turns out
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that band theory, in conjunction with the Pauli exclusion principle, can be used to explain
the fundamental nature of insulators. conductors. and semiconductors. Band theory is also
important in understanding semiconductor heterostructures, considered in Chapter 9. which
are fundamental structures in nanoelectronics.

Another main point of this chapter is to introduce the concept of effective mass.
can imagine that it would be extremely difficult to account for all of the interactions between
an electron and the various particles that make up a material. As described previously,
in an exact model this interaction is taken into account via the potential energy term in
Schrodingefs equation. However, as we will see, with some simplifying assumptions we
can take into account the presence of a crystalline material by simply considering the
electron to have a mass that is different from its empty space value, With this idea we
can, for example. reconsider the quantum well. quantum wire. and quantum dot examples
introduced in the last chapter, this time constructing these structures from a solid material,
rather than being simply empty space. The most technically important materials for these
applications are semiconductors.

In this chapter, attention is focused on bulk material properties; applications to nanoscale
structures made from these materials will be considered in subsequent chapters.

5.1 CRYSTALLINE MATERIALS

The band theory of solids applies only to crystalline materials, strictly speaking. and so it
is worthwhile to begin with a brief introduction to the different forms a solid may take.

Solid materials may be classified as crvstalliize, polvcrystalline, or amorphous, A
crystalline solid has a regular structure, consisting of a periodic array of atoms called the
lattice , A polycrystalline solid has a well-defined structure in each of many small regions,
but each region generally differs from its neighboring regions. In some ways, the opposite
of a crystalline material is an amorphous solid, which does not exhibit any sort of regularity.
The most common amorphous materials are glass and plastic.

Most materials of interest in electronics have been, traditionally, crystalline materials
(e.g., semiconductors, such as silicon and gallium arsenide, and conductors, such as copper
and gold). In this chapter, we consider the effect of such a periodic lattice on the behavior
of electrons. Although in the past, naturally occurring crystalline materials were used for
electronics applications. advances in materials processing technologies have begun to allow
synthetic crystalline materials to be developed, engineered specifically to control electronic
properties of the material.

Crystal Types. The fundamental property of a crystal is regularity in its atomic
structure; the atoms in a crystal are arranged in a regular (periodic) array. To be fairly
general, we need to develop two concepts: the idea of a lattice and of a basis.

A lattice is a set of points that form a periodic structure. The simplest lattice, called
a sinple cubic (sc) lattice, consists of points equally spaced at the corners of a three-
dimensional cube, as shown in Fig. 5.1, although few materials have this structure.

A

Figure 5.1 Simple cubic lattice. The lattice points are shown by a solid dot. located at the vertex of

each corner. All sides have length a.

The lattice is defined by three fundamental vectors, a1, a-,. and a3, known asfimda

nienial tmnslatioii vectors. such that the atomic arrangement looks identical when viewed

from the point r and the point

r’=r+T, (5.1)

T = u1a1 + u2a2 + u3a3 (5.2)

Is called the crystal translation vector and where u —u are integers. Many translation

vectors are possible, and the set of three vectors form a parallelepiped. The parallelepiped

with the smallest volume is called the prinitit’e cell. constructed from primitive translation

‘e(tOrs. The primitive cell has only one lattice point (perhaps shared with other cells). and

a crystal can be constructed from repetitions of the primitive cell. However, for envisioning

the material to consist of repetitions of cells, the primitive cell is usually not the most

convenient tO work with. and here we will be primarily interested in other unit cells.
Whereas the lattice specifies the periodic arrangement of the crystal, it may not be the

case that a single atom is located at eachlattice point. A group ofatoms called a basis, consisting

of perhaps many atoms, is such that when the basis is placed at each lattice point the entire

crystal is formed. That is, by definition of a lattice, the basis repeats in a periodic manner. The

simplest example would be the case when the basis consists of one atom. An example where

the basis consists of two different atoms is shown (in two dimensions) in Fig. 5.2.
Just slightly more complex than the sc lattice is the body-centered cubic (bce) lattice.

shown in Fig. 5.3. In particular, sodium and tungsten have this structure.

Of more importance for semiconductors is theface-centered cubic (fcc) lattice, shown

in Fig. 5.4, which is constructed by adding to the simple cubic lattice additional points

in the center of each square face. Materials exhibiting this type of lattice are copper

(Cu). gold (Au), silver (Ag), nickel (Ni), and, importantly, silicon (Si), gallium arsenide

132 Section 5.1 Crystalline Materials
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/.
.

Two-atom basis

Figure 5.2 Crystal formed by a two-atom basis centered at each lattice point.

Figure 5.3 Body-centered cubic lattice. The lattice points are shown by a solid dot, located at the
vertex of each corner, and in the center of the cube. All sides have length a.

(GaAs), and germanium (Ge). The lattice constant (a) for Si is 0.543 nm. and for Ge,

a = 0.566 nm. The lattice constants of some other materials are listed in Table V in

Appendix B.
To illustrate the idea of a primitive cell and unit cell, Figs. 5.1. 5.3. and 5.4 show what

are called the conventional cells, which are the structurally simplest unit cells; the lattice

constant a is the length of the side of the conventional cell. However, only for the simple

cubic lattice is the conventional cell primitive (cell volume is a3). The primitive cell for

the important fcc lattice is shown in Fig. 5.5 (conventional cell volume is a3. whereas the

Figure 5.4 Face-centered cubic lattice. The lattice points are shown by a solid dot, located at the
vertex of each corner, and in the center of each side of the cube. All sides have length a.

I.
.

I. .

.
I

.

.

.
.

.
I.

.
I.

.

.
.

/
Lattice point

.
.

• /
•

•
•

•

//

x

V

Figure 5.5 Primitive cell for the fcc lattice.
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primitive cell volume is a3/4), where the primitive translation vectors are

a1 = (a + a) a = (a + a) . a = (a ± a) . (53)

Although important semiconductors exhibit the fcc lattice. the basis consists of tw
atoms. If the to atoms are identical. the material is said to hake the dianiond structure

which occurs for Si. Ge. and carbon (C). If the two atoms in the basis are different. the
material is said to have a chic blende structure. Semiconductors such as GaAs and AlAs
have this structure. and are often called compound semiconductors (e.g. . for GaAs, the two
atoms in the basis are gallium and arsenic).

Having established the idea of periodic atomic structure. we consider next how dcc
tl.ons behave in a periodic potential.

5.2 ELECTRONS IN A PERIODIC POTENTIAL

When we want to examine the properties of an electron in a periodic lattice. we need to
consider Schrddinger s equation such that the potential energy term V (r) reflects the fact
that the electron sees a periodic potential.

Consider a one-dimensional example. where the lattice points are spaced a distance a

apart. and we assume an ionized atom (an ion) is located at each lattice point. A liberated

electron moves about the material subject to the attracti e Coulomb (electrostatic) force

between the negatively charged electron and the positively charged ions, The Coulomb

force between the electron and a single ion is

1 (q.)(—q.)
V (x) =

—

(5.4)
47tro jxi

from basic electrostatic theory, where x is the distance between the electron and the ion,

and so the electron has the potential energy depicted in Fig. 5.6. The potential energy is
obviously periodic. i.e.. V (.v) = V (x + a).

V()

Figure 5.6 Potential V (x) versus position x in a periodic lattice. Solid dots indicate the location of
ions, and a is the period of the lattice.
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Generalizing to three-dimensions, we find that Schrodinger’ s equation is

7 fl2
I ————V + V (r) ) (r) = Ei4i (r) , (5.5)
‘\ 2me if

where the potential energy term is periodic,

V(r)=V(r+T). (5.6)

and where T is the crystal translation vector. There is an important theorem called Bloch’c

theorem that applies to waves in periodic structures in general. (Recall that electrons have
wave properties through de Broglie’s relation.) For the case of Schrodinger’s equation. it

states that the solution of (5.5), when the potential is periodic. can be written as the product

of a plane wave and a periodic function,

s(r) =u(r)e’, (5.7)

where k is the wavevector to be determined (called the Bloch wai’evector) and where ii is

periodic,

u(r) =u(r+T). (5.8)

Thus,

i4i (r + T) = U (r + T) e1kT) U (r) elkrelkT = ‘1 (r) elkT. (5.9)

It is important to note that the Bloch theorem shows that electrons can propagate through a
peifect periodic medium without scattering (i.e.. without hitting the atoms). One could say.
mathematically, that this is because the plane wave part of the solution, e’, exists over
the entire crystal, and therefore “ sees” the whole crystal.

5.3 KRONIG—PENNEY MODEL OF BAND STRUCTURE

The potential depicted in Fig. 5.6 is fairly realistic in a one-dimensional sense. although

Schrodinger’ s equation cannot be solved exactly when V has this form. As an approximate

model, assume a one-dimensional crystal where

1 0. 0<x<a1.
V(x)= — —

Vo, —a2<x<O,

and where a = a1 + a2 is the period of the lattice, as shown in Fig. 5.7. This is known as
the Kronig—Pennev ,nodel.t

This model provides an introduction to band theory. However, it is oxerly simplistic and leads to only a

very rough approximation of carrier behavior in real materials.
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Enforcing continuity of 4i and iii’ at x = 0 and x = a1 leads to the eigenvalue equation

a2 82
cos ka = cos (aai) cosh (6a2) — sin (aai) sinh (6a2),

2ct8

In the region —a2 <x <0, the potential is V = Vo, and the solution of Schrodinger’s
equation is

ijj (x) = Ae + Be1,

— [2me(E—Vo)

V 112

as shown in Section 4.1.1. In a similar manner, for 0 <x <a1 the potential is V = 0, and
the solution of Schrodinger’s equation is

ij (x) = De’ + Fe’

In one dimension, the Bloch form (5.7) is

in terms of the to-be-determined Bloch wavevector k, where

ic (x ± a) = U (x + a) e!± = u (x)

8 —

/2me

(V0 — E)

—
112

In the preceding equations, the energy E is the only unknown parameter. For a solution
to exist, we must have
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Figure 5.7 Kronig—Penney model of the potential due to a periodic lattice of period a.
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x

if 0 < E < V0, and

where

(5.18)

if E> V0. where

a2+2
coska = cos(aai)cos(3a2)— sin (aa1)sin (a2),

2c

(5.10)

(5.19)

where

(5.11)

(5.20)

/2meE
112

(5,12)

—l <coska <+1,

4i (x) = u (x) e

(5.13)

(5.21)

and so the right side of (5.18), denoted as r(E), must obey this condition. A typical plot of
r (E) vs. E is shown in Fig. 5.8.

This figure makes clear the fact that there are certain allowed values of energy, called
allowed energy bands, and certain unallowed values of energy, called band gaps. That is,
if F is in an allowed energy band, Schrodinger’s equation for the Kronig—Penney model
has a solution, and if E is not in an allowed energy band, there is no solution (because we

Therefore,

u (x) = u (x + a).

(5.14)

r (F)

(5.15)

F7 F3

= iji (x) (5.16)

and, using this relationship, we can write down the wavefunction in the following period,
a1 <x <a1 +a, as

E6 F7

ifr (x) = {Ae’ —a) + Be_1 a) } e!kdt,

= {De’ + Fex} elka,

a1 <x a. (5.17)

F4

E

F5

Allowed bands

L1 Band gaps

a <x <a1 + a.
Figure 5.8 Plot of r (E) versus F, showing allowed energy bands and band gaps.
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Due to the periodic nature of the crystal, there is no real difference between the

Section 5, 3 Kronig—Penney Model of Band Structure 141140 Chapter 5 Electrons Subject to a Periodic Potential

must have cos ka < 1 in (5.2 1)). Within an allowed band energy can take any value, i.e.,
it is not discretized. Note that as energy increases, the allowed energy bands increase in I wavevector k and the wavevector k ± ii2/a. a = 0. ±1. ±2. . . (that is. the structure is
width. and so the forbidden bands decrease in width. As we will see later in this chapter. the periodic in both “real space’ and “wavevector space.” also known as reciprocal space). This
concept of energy bands leads to the fundamental characteristics of conductors. insulators, i can be proved in general. although here one can simply note that (5.23 is multivalued due
and semiconductors. I to the inverse cosine function. That is.. assume that a given E value determines the right side

Since I of (5.18) (or (5.19)). leading to ±k from (5.23). Any other wavenumber value ±k ± n2/a,
coska = r (E) . (5,22) j n = 0. ±1. ±2. . . will also satisfy (5.18) (or (5,19)), since cos (k + n2/a)a = coska for

ii an integer. Therefore, for a given allowed energy, there are an infinite number of k values,
we can generate an important figure called the dispersion diagram, which is a diagram of and the E—k plot can also be drawn with E oscillating in a continuous fashion within the
energy versus wavenumber (E vs. k). To generate the dispersion diagram. start at E = 0 and band as k increases. This depiction, shown in Fig. 5.10, is known as the repeated zone
compute r (E). If Ir (E)j = coskal > 1, we are at a forbidden energy (i.e., in a bandgap), j scheme)
and we need to increase E a bit and try again. If jr (E)j 1, we are at an allowed energy Lastly, another depiction arises from noting that the energy bands in the higher Bril
(i.e.. in an energy band), and in this case the coffesponding wavenumber is bum zones can be all translated to the first Brillouin zone by shifts of n2n/a. This results in

I I shat is called the reduced zone scheme, depicted in Fig. 5. 1 1. In the remainder of the text,
k = — cos1 (r (E)) . (5.23) band diagrams will be depicted in the reduced zone scheme. which is the most commona I format for describing band structure. However. it should be noted that all three depictions

Since cosine is an even function, —k will also be a solution. By increasing E by a small j (extended. repeated. and reduced> coiivev the same information.
amount and checking the value of r (E), we can generate the plot of allowed and unallowed
energy bands. One form of the result will look like Fig. 5.9. This depiction is known as the
extended zone scheme.

The various sections of wavenumber space are divided into what are called Rn/bum 5.3.1 Effective Mass
zones, with the range

Tt Tt
— — k — (5.24) In the previous chapter. vanous nanostructures, such as quantum wells, quantum wires. anda a

quantum dots. were considered. However, the structures were basically empty boxes for
denoting the important first Brillouin zone. The second Brillouin zone is the ranb electronc. At this point, it may ceem difficult to imagine how one can incorporate the fact

ae

that a nanostructure is made from a real material, such as a semiconductor. It turns out that
, (5.25) there is a relatively simple approximate method to do this, involving a concept known as

effective ,nms.
and so on for higher zones.
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Figure 5.9 Energy band energy E versus Bloch wavenumber k in the extended zone scheme.
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Figure 5.10 Energy band energy E versus Bloch waenumber k in the repeated zone scheme.
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In a nonrelativistic sense, an electron in empty space has a well-defined, constant
mass. However, it is often useful to view mass as merely a proportionality factor between
force and acceleration, (Recall Newton’s second law, F = ma.) This view is particularly
appropriate when studying electrons in crystals, since in this case it turns out that often
electrons appear to act as if their mass is different from the free-space value. This simply
means that in a crystal, electrons do not respond to external forces in the same way that
free electrons do.

We view an electron quantum mechanically as represented by a wavepacket, with the
electron’s velocity being its group velocity (as discussed in Section 2.5).

i3w lBE

The influence of the electron’s environment is contained in the energy relation E (k). For
example, for an electron in free space. we use (4.5),

-, ,

E (k) = V0 +
2me

For an electron in a periodic potential, even assuming the simplistic Kronig—Penney model,
E (k) cannot be given by a simple formula, but it can be determined by the procedure
developed on pages 140. Methods for determining the energy-wavenumber relationship for
more realistic models of materials are beyond the scope of this book, although the band
structure can be exceedingly complex. However, usually the complete band structure of a

material does not need to be known, since often only electrons in certain regions of a band
are of interest. For example. considering semiconductors, typically one is interested in the
behavior of electrons near a band edge (say. in the center of the first Brillouin zone near
k = 0). since these are the electrons that will be most important for conduction. In that case.
only the local behavior of the E—k curve will be important.

The main idea is the following. We know how to solve Schrodinger’s equation for
an electron in an “empty” region of space, either confined or unbounded, where we obtain
a parabolic E—k relationship. (See, e.g., (4.5) or (4.26).) The parabola has the form E =

V0 + ak2, where a =h2/2me. Considering the importance of electrons near bandedges in
semiconductors, and the occurrence of parabolic-like dispersion behavior near bandedges in
real materials (the band structure of Ge, Si, and GaAs is shown in Fig. 5.12), it makes sense

—2

—3

—4
L [1111 F [100] X L [1111 F [100] X L [111] F [100] X

Wave Vector

Figure 5.12 Bandstructure of Ge, Si, and GaAs. The F point is in the center of the first Brillouin
zone (k = (0, 0, 0)), and the X and L points represent the zone boundaries along certain directions
in three-dimensional k—space. In this case, X = (1,0,0) 27t/a, and L = (1, 1, 1) 7t/a, where a is the
length of the cube edge in the fcc lattice. The curves do not look symmetric about the center point
since moving from F to X and from F to L represents moving in different physical directions in the
crystal. (Based on a figure from S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons.
1969. Used by permission.)
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Figure 5.11 Energy band energy E versus Bloch wavenumber k in the reduced zone scheme.
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to locally model dispersion behavior using a parabolic relationship. This leads to the form

E(k) = E(ko)+(k—ko)2. (5.28)

which is expected to be valid near bandedges centered at the point k = k0, and where 13 will
depend on the material in question (i.e.. governs the rate of expansion of the parabola).

Since the band structure can be calculated or measured, can be determined for a given
material. However. (5.28) can be made to look like the “empty” space result if we set

=h2/2,n*. where i,i is called the effective mass (which will, like . depend on the
material and band in question). Substituting this value of mass for ‘11e i Schrodinger’s
equation essentially incorporates the effect of the material on the electron. as long as one
is interested in the behavior of the electron in the vicinity of a parabolic region of a band.

An explicit equation for m* can be obtained by taking two derivatives of (5.28) with
respect to k, leading to

m*=1i2() . (5.29)

Note that the effective mass is proportional to the reciprocal of the curvature of the E—k
plot. From (5.26),

31), 1 i32E—s- = (5.30)
Bk hak2

leading to the equation of motion

qe1l. (5.34)

where is the magnitude of the electric field for this scalar problem. Using (5.26) in (5.32),
we obtain

111* = j2k
()_] .

(5.35)

As discussed in [8]. this definition of effective mass can be used where the E—k curve is not
parabolic. if the E—k relation is simply E = Vo + k2, the two definitions lead to the same
effective mass, ,it 2/2 The important point is that at most points of interest within
an allowed energy band, the electron in a crystal moves as if it were free, except with an
effective mass.

Effective mass can be positive or negative. A positive effective mass rn*/rne > 1
means that the electrons velocity increase is less than what it would be for an electron in
free space (i.e. . the electron seems heavier). the difference indicating momentum transfer
to the lattice. A positive effective mass 111*/me < i, the usual case in semiconductors at
the bandedge, means that the electron ‘ s velocity increase is more than it would be for an
electron in free space (i.e.. the electron seems lighter). the difference indicating momentum
transfer from the lattice. For example. for GaAs. iii = O.O67m. resulting in a significant
narrowing of the E—k curve. as depicted in Fig. 5.13. A negative effective mass (often

(5.31)

and so an equivalent expression for effective mass is

m* = h
\\ 8k J

One can also develop a different definition of effective mass. Using hk as rnomentum,

with an electron represented by a wavepacket moving at the group velocity, one can define

an effective mass such that

rn*vg = hk. (5.32)

This is consistent with Newton’ s law (force equals the time rate of change of momentum),

F = , (5.33)
dt

As seen in Fig. 5.12. for any material there will be many different regions of parabolic E—k behavior.
and. thus. man’ different values of will exist. although typically onI one or a few such parabolic regions will

be of interest.
:Tle quantity hk is called the crystal niomentunz. This is not the physical momentum of the electron,

Rather. it is a quantity that describes the electron’s Bloch state within a band, and is the correct quantity to use in

Newton’s law to obtain the election’s dynamics in a crystal.

—2.5 0 2.5
k (1/nm)

Figure 5.13 E (eV) versus k (nm) for an electron in free space. E (k) = 112k2/2ine (wider curve).
and for an electron at the bottom of the conduction band (set to reference level E = 0) in GaAs using
the parabolic approximation, F (k) = 1i2k2/2ni (narrower curve). The effective mass ,ii = O.Ofl7me
for GaAs results in significant narrowing of the E—k curve relative to the free-space environment.
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Figure 5.14 Energy and group e1ocity t = (1 /,I(ilE/HkI for two represeritatl\e hands (left, a
typical conduction band. and right. a tpical xalence hand: bands vill be discussed further in the next
section). The period of the crystal is a.

found near the top of an energy band means that. conversely. the particle is accelerated in

a direction opposite to the direction of the applied force
Figure 5. 14 depicts the relationship between energy and group velocity for a typical

portion of an E—k curs e.

If we consider what happens khen an electric field is applied to a crystal. a clearer
picture of the behavior of electrons in energy bands develops. When a constant electric
field of magnitude E is applied to the crystal. an electron will experience a Lorentz force,

qE. This force will accelerate the electron, increasing its wavenumber, To be specific, the
equation of motion (5.34) can easily be solved to yield

k(t) =k(O)+ t. (5.36)

To see this. consider F = ina. Since F = q F ssith q < 0. then in < 0 means that in response to an
applied electric field, the electron moves in a direction opposite to that vhich ssould occur in free space.

and so k increases linearly with respect to time. (For simplicity. we can assume k (0) = 0.)
As k increases towards the value k = ‘t/2a. the electrons velocity increases, as expected,
as does the effective mass.

At k = rr/2a, the E—k curve has an inflection point (and so the parabolic band assump
tion is no longer valid), and the electrons velocity has reached a maximum. As k increases
further. the electron decelerates. and finally. as k reaches the Brillouin zone boundary at rt/a.
the electron’ S velocity goes to zero, indicating that the electron wavefunction is represented
by a standing, rather than traveling. wave.

As k increases further and moves away from the zone boundary into the second
Brillouin zone, a conduction band electron will initially have a negative group velocity.
indicating that the electron is moving in the reverse direction. The electron continues to
reverse direction periodically as k increases through zone boundaries.

Therefore, we have the following picture. We apply a static (d.c.) electric field to the
crystal, and as a result of band structure, the electron oscillates back and forth. (These are
called Bloch oscillations.) Can this really be so? In practice, this behavior is not seen. Defects
and impurities will generally be present,1 as well as lattice vibrations called phonons, and

Despite what could be inferred from the extended zone scheme depicted in Fig. 59. as k increases through
Brillouin zone boundaries, the energy of the electron does not “jump.’ E (A) evolves smoothly, as depicted in the
repeated zone scheme of Fig. 5.10. Sometimes the electron is said to be Bragg scattered at the zone boundaries,
but this gives a rather unphysical picture, and so this idea is avoided here.

As an interesting aside, the tollowmg figure shows an STM image of electron standing waves extending
outward from defects/impurities in a Cu surface.

E

7k

1/

k

k

I

p

UI

a
A 42 nm x 42 nm STM image of Cu (T = 150 K). Defects create standing electron ‘isaves emanating radially
outward from the defect. (Reprinted ssith permission from Petersen. L.. P. Laitenberger. E. Lgsgaard. and
F. Besenbacher, “Screening Waves from Steps and Defects on Cu(l 1 1 1 and Au(1 I I) Imagined with STM: Contri
bution from Bulk Electrons,” Phy5. Rev. B, 58 (1998): 7361. Copyright 1998. American Physical Society.)
5Phonons are lattice vibrations (sibrations of the atoms in a lattice) treated quantum mechanically. The

energy of these vibrations (i.e .. heat) is related to the kinetic energy of the atoms in the material. For a lattice
vibration of frequency IJ. energy is quantized a Sw. as sith all quantum particles. Heat is carried through a
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the electron will collide with these obstacles such that the wavevector will not be able

to increase very much. That is. we can only solve (5.34) over the time period between

collisions. and, therefore, the wavevector does not simply linearly increase. This is discussed

further in Section 10. 1 . The wavevector only has a chance to increase a small amount j
the first zone before a collision occurs. and. therefore. the k value will not reach the zone

boundary k = ±rr/a.
For example, assume that the average time between collisions (called the momentum

relaxation time) is t = 2.47 x lO 14
, which is the value for copper at room temperature. If

= —ioo V/rn, then k (t = 2.47 x lO) = 3.753 m1. The first Brillouin zone boundary

occurs at k = ±rt/a, and, using a = 3.61 A for the lattice constant for copper, we obtain

k = 8.7 x i09 m1 at the zone boundary. Thus, for a typical collision time, the wave vector

only gets about lO percent of the way to the Brillouin zone boundary before its momentum

is stopped by a collision! It is obvious that even very large applied fields or long values of

will not change the situation too much. However. Bloch oscillations are real. and have been

experimentally observed in a number of periodic structures, most notably semiconductor

superlattices. (See Section 6.3,4.)
Note that electron collisions are regarded as the cause of electrical resistance in the

classical, free-electron gas model of conductivity, as discussed in Section 10. 1. However, in

the quantum mechanical picture. the collisions are actually necessary to allow d.c. current

to flow! If no collisions occur, such as may be the case in an ultrapure sample at low

temperatures, an a.c. current will result from a d.c. applied field!

Lastly. note that for free electrons, the E—k curve (4.5) is a parabola,

E = —, (5.37)
2me

and, therefore.

82E 2

—- = —, (5.38)
dk me

such that

= me, (5.39)

i.e., the effective mass is the ordinary mass, as expected. It is because the dispersion rela

tion for an electron in a material does not have the simple form (5.37) that the concept of

effective mass arises.
In summary, via the effective mass, we represent the influence of a crystalline lattice on

an electron. The specific nature of the periodic potential is contained in the E (k) relationship,

material as a flow of phonons. Similar to photons. phonons transport energy and momentum, but not mass. and

obey’ Bose—Einstein statistics. (See Section 8.2.)
There are two broad classes of phonons: relatively low-energy modes called acoustic phonons. which arc

related to sound propagation in a material, and higher energy modes called optical phonons, so named because

optical energies can excite them.
t is temperature and material dependent. although one could consider practical values into the picosecond

range.
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winch usually must be obtained numerically or experimentally. We can often greatly simplify
solving problems involving an electron in a crystal by solving an equivalent problem of an
electron in free space, except where the mass of the electron is given by tnK. For example,
we can solve Schrodinger equation

/ h2
I ——V- + V (r) I ii (r) = Esfr (r) , (5.40)
\\ 2m

where V (r) accounts for the crystal lattice (and is. therefore. holTendously complicated).
or we can solve the much simpler equation

(V2 + v0) i (r) = Ei(r) . (5.41)
2m

where m is the effective mass, accounting for the crystalline lattice, and where V0 is a
constant potential depending on the problem. The method of replacing (5.40) with (5.41) is
known as the fjective mass approximation of Schrodinger’s equation.

The effective masses of electrons, in. and holes, 1;,, in Si and GaAs are given in
Table 5. 1, and values for some other common semiconductors are given in Table IV in
Appendix B. Holes will be discussed later in this chapter.

To further complicate the situation, in many crystals there is a different effective mass
in each different direction: near bandedges this is given as

m;• = h2 (5.42)

However, for many metals, the effect of the lattice is generally screened by the large density
of electrons (Section 3.5), such that often in a metal one can set m5 = me.

In an amorphous material such as Si02. the concept of energy bands is not quite
appropriate. However, often electrons in Si02 can be modeled as having an effective
mass of the order of O.4lne—O.9me. and the effective mass Schrodinger equation can be
used to model electrons in, for example, metal-oxide-semiconductor structures such MOS
capacitors.

TABLE 5.1 EFFECTIVE MASS IN Si AND GaAs.

Effective Mass

Semiconductor in/me

0.50
Si 0.26

0.24
0.50

GaAs 0.067
0.082
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5.4 BAND THEORY OF SOLIDS

The material presented in the previous section leads to what is called the band theory of
solids, the central idea of which is that, due to the periodic potential associated with the
crystalline lattice, there are allowed and disallowed energy bands. Furthermore, we have
only found the possible bands and the bandgaps, but have not considered if a certain band
will be “filled.” Whether or not a band has electrons in it depends on the number of electrons
in the system, and the energy of the electrons. Several different situations arise:

1. If an allowed hand is completely empty of electrons, obviously there are no electrons
in the band to participate in electrical conduction. This can happen, for example, in
a high-energy band, where the energies of the band are above the energies of any of
the system’s electrons.

2. Perhaps a bit more surprising is the fact that when an allowed band is completely filled
with electrons, those electrons cannot contribute to electric conduction either. This is
because electrons are fermions, and must obey the Pauli exclusion principle. so that
no two electrons can be in the same state, Therefore, if an electron is given energy,

due to, say, a voltage applied to the material, the electron must move to a (perhaps
only slightly) higher energy state. However. if all such states are already filled, the
electron has no empty state to move into, and. therefore, the electron cannot gain any

energy and contribute to conduction This would be the case. for example. for a band
of energies that are much less than the Fermi energy of the system’s electrons.

To partially summarize, no conduction can take place in a material that has energy

bands that are either completely filled or completely empty. An analogy is to a jar of

marbles. An empty band is like an empty jar. and a filled band is like a jar filled so full

that no marbles can move (thus, there are no empty spots for a marble to move into). Only

when the jar is partially full can marbles move within the jar.

3. Thus, we are left to conclude that only electrons in a partially filled energy band can

contribute to conduction.

In general, the lower bands in a material will be completely filled with electrons.

(Recall that in Section 4.6 we discussed the hydrogen atom and the periodic table, and that

states are typically filled one by one, starting at low energies.) The main question is whether

or not the uppermost band that contains electrons is completely filled, or only partially filled.

Materials that have partially filled uppermost bands are called conductors (mostly metals),

such that when energy is supplied by an external source, electrons can move into a higher

unoccupied state within the band.
To illustrate these concepts, a real-space band diagram for a typical metal is shown

in Fig. 5.1 5. It is obvious that the highest band to contain electrons is partially full, and so

electrical conduction can take place.

Of course, if a very large amount of energy is supplied such that the electron can jump across the energy

gap into a different. higher, empty. or partially filled band. that electron can contribute to conduction.

Filled

L\1
Position

Figure 5.15 Band structure (real space) for a typical metal.

The work function, e. is the energy difference between the vacuum level and the
Fermi level (the uppermost energy of the electrons at T = 0 K). It is thus the energy
needed to completely liberate an electron from the metal at T = 0 K. and, given the narrow
tail of the Fermi—Dirac distribution. which will be described in Section 8.2. this energy
approximately holds at other temperatures as well. Energy can be supplied, for example,
thermally, or electromagnetically, as in the photoelectric effect, For example, considering
shining light on a metal surface, Einstein’s relation is

EKE, (5.43)

where hw is the energy of the incident light, and EKE is the kinetic energy of the emitted
electrons. For copper, the work function is on the order of 4.75 eV (ranging from 4.5 to
5.0 eV depending on the crystal orientation), and for gold, e is in a similar range. Thus,
as discussed in Section 2.2. the photoemitted electrons will have kinetic energy EKE =

— e. which only depends on frequency. and not on intensity.
Materials having completely filled lower bands and empty upper bands, such that

conduction cannot take place, are either insulators or semiconductors at low temperatures.
as shown in Fig. 5.16. The highest band that is filled at T = 0 K in semiconductors is
called the valence band, and the unfilled bands above the valence band are called conduction
bands.

Work
function
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Vacuum energy
.
.
.

) Empty

) Partially filled
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E
Filled

Metal I
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Electron
affinity

ex

Bandgap
Eg —

Empty Conduction band

‘v acuum energy
.
.

)

Partially filled conduction band

Partially filled valence band

)

Filled

Figure 5.16 Band structure for a typical semiconductor (E 1 eVI at T = 0 K. This picture also

holds for a typical insulator (E 8 eV) for a range of temperatures.

From the point of band theory . the main difference between a semiconductor and an
insulator is the size of the bandgap. For semiconductors, the energy gap is not too large

(for Si, E 2 I . 1 2 eV. and for GaAs. Eg 2 1 43 eV . so that as temperature increases

some thermally excited electrons have enough energy to jump across the gap and reach

a previously empty band, thus being able to contribute to conduction. Other than thermal

energy. an external excitation such as an applied voltage can also supply enough energy for

electrons to jump across the gap and contribute to conduction, especially when dopant atoms

are present in semiconductors (to be discussed in the next section). The band structure after

some energy input (in this case, thermal) is depicted in Fig. 5.17. The energy difference
between the vacuum level and the bottom of the conduction band is called the electron

affinity, cx.
For insulators, the bandgap is large (perhaps 8—10 eV; Si02 has E 8 eV), so that

thermally excited electrons, or those excited by an applied voltage, do not generally have

enough energy to cross the gap. Of course, even for good insulators, the actual gap is finite.

If enough energy is supplied, thermally or by an applied voltage, electrons will cross the

gap and move into an unoccupied state in a higher hand, thus being able to contribute to

conduction.
For example, consider the gate oxide in a MOSFET assuming a Vo = 1.5 volt power

supply and SiO2 as the gate oxide. The associated energy is eV0 1.5 eV, which is much

less than the bandgap energy of Si02. Thereft)re, in this case, valence electrons will not

be able to cross the gap and contribute to conduction. However, this energy may be large

f\ \\\\\ N

___________

)Filled

Semiconductor, I > 0 K

Figure 5.17 Band structure for a typical semiconductor at T > 0 K. showing that some of the
electrons that were in the valence band at T = 0 K (Fig. 5.16) have moved, via thermal energy, into

the first conduction band. Note that E is slightly temperature dependent.

enough to excite electrons associated with impurities, (which lie at energy levels in the band
gap. as discussed in the next section). into the conduction band.T

Recalling the electronic configuration of the elements in the periodic table, we find that
if the outermost shell, (which, for an individual atom, is analogous to the topmost conduction
band containing electrons for a solid), is partially filled, due to an odd number of electrons,
the material will generally be a conductor, If the outermost shell is completely filled, due to
an even number of electrons, the material will be an insulator or a semiconductor, depending
on the size of the bandgap. This is sort of a general rule of thumb, and doesn’t always hold.
For example, beryllium has four electrons, yet is a metal. (Beryllium belongs to the class
of divalent metals in group hA of the periodic table.)

Holes. When an electron is elevated from the valence band to a conduction band,
it leaves an empty spot in the valence band called a hole. Holes are not implicated in an
electron gas model of metals, nor generally in the characterization of metals at all, due to
the very large numbers of “free” conduction band electrons. However, in a semiconductor,
holes play a prominent role, and for each electron that contributes to conduction, there is an
associated hole that can also contribute to conduction. It can be seen that holes are capable

T\\ie reiterate that 5i02 is an amorphous material, and, as such, the concept of a bandgap. which was
developed for crystals, is an approximation.
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of moving in the valence band by considering the following. Assume that electron e1 moves
to the conduction band. leaving behind a hole Ii i in the valence band. The valence band is
no longer full. and. therefore. another valence band electron e2 can move. and it will tend
to move into i .

This fills the original hole. but leaves another hole. 112. in the position that
e previously occupied. A valence band electron e moves into h2. leaving behind hole h3,
and so on. In this way. holes (spots in the lattice where an electron is missing) can move
in the valence band. Holes carry positive charge (i.e., the absence of negative charge). and
flIO’v jfl the direction of an applied electric field. Physically, it should be kept in mind that
in both bands it is actually electrons that are moving.

Furthermore. the hole effective mass in many semiconductors is separated into heavy

and light hole masses. since the valence band is often divided into light and heavy bands.

(See Fig. 5.12 on page 143.) Actually. the valence band often consists of several bands. and
in each band the effective mass is different. Bands having large effective mass are called
heavy bands. and bands having lower effective mass are called light bands. The heavy and
light hole effecti’ve masses for Si and GaAs are listed in Table 5. 1 , and values for other
common semiconductors are provided in Table IV in Appendix B.

5.4.1 Doping in Semiconductors

It is often necessary to know how many electrons can contribute to conduction, In metals,

the conduction band is partially full, even at T = 0 K, and there are a lot of electrons to

contribute to electrical conduction. As described previously, in semiconductors at T = 0

K, the valence band is full and the conduction band is empty, so that no electrons can

participate in conduction. As temperature increases, thermal energy of the crystal elevates

some electrons into the conduction band, leaving a hole in the valence band. The resulting

(intrinsic) carrier densities of electrons and holes are labeled n and p , respectively. It is

obvious that, since each time an electron is elevated into the conduction band a hole is

created in the valence band, n = p.
The intrinsic carrier concentration in a typical semiconductor is very low because

thermal energy is usually small compared to the handgap energy. As a result, in Si at

room temperature, for example. n1 1.5 x 1010 cm3: for comparison, copper has on the

order of 1022 cm3 carriers. However, the carrier concentration in semiconductors can be

modified by adding impurities called dopants. Undoped semiconductors are called intrinsic
semiconductors, and doped semiconductors are called extrinsic semiconductors.

For illustration purposes. consider Si, a Group IV element (i.e.. silicon has four outer

shell electrons). If we introduce impurity elements from Group V (i.e.. an element having

five outer shell electrons, such as phosphorus). each impurity will bond (covalently) with

four neighboring silicon atoms, using up four of its electrons in the process, as shown in

Fig. 5.18. The fifth electron will still be bound to the nucleus of the impurity (i.e., the

impurity atom will have a net positive charge). although much more weakly than it would

be in the elemental state. A small amount of energy (typically. on the order of 0.05 eV) will

That there are some electrons to contribute to conduction in a partially filled band is obvious. That there

are. in fact. a lot of electrons that can contribute to conduction is established by considering the density of states.
which will be discussed in Chapter 8.

0

000

0
Figure 5.18 Part of a Group IV element lattice with the insertion of a Group V element. The double
parallel lines indicate a covalent bond. One “extra” electron ssill be present, loosely bound to the
Group V atom.

Figure 5.19 Real-space energy band diagram showing the lesel of a donor electron. and its transition

to the conduction band upon adding a small amount of energy.

liberate the electron and move it to the conduction band. The impurity is called a donor,
and we can view this on an energy band diagram as the electron being at a donor level.

E11. lying just below the conduction bandedge. as shown in Fig. 5.19. A small amount
of thermal energy will be able to bridge the energy gap E — Ed. and the electron will

contribute to conduction. For example. considering silicon with the donor being phosphorus,

— Ed 0.044 eV at room temperature. Thus. donor atoms are easily ionized, resulting
in what is called an ii t\pe semiconductor.

As a rough approximation. since the excess electron is loosely held to the donor

atom. the situation resembles the hydrogen atom in that one can consider a two-particle
problem (the excess electron, and everything else). This hydrogen model can provide a

rough approximation for these shallow dopants. The fact that the dopant atom is immersed

in a semiconductor, rather than free space. is accounted for by using the appropriate effec
tive mass and permittivity. Energy states of the hydrogen atom are given by (4.117). and

substituting the effective mass in place of !1l(, and the permittivity of the semiconductor in
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iii
*
q4A Ed

=

8rEh-

place of the vacuum permittivity. we have

in *q4
E,1 = — ,. (5.44)

8EEsh-n

If this dopant atom is to be ionized, there must be a transition from the ii = I state to
ii — oc. leading to the donor ionization energy

(5.45)

t

For Si, using in = O.26me and Er = 11.7. we obtain AEd = 0.025 eV, within an order of
magnitude of measured values. Measured values of donor ionization energies for Si and Ge
are given in Table 5.2.

In a similar manner, the impurity element can come from Group III of the periodic

table, having three outer shell electrons (e.g., boron). In forming a covalent bond with
its four neighboring silicon atoms, there will be one electron missing, forming a hole,

as shown in Fig. 5.20. An electron with a small amount of energy in the valence band

TABLE 5.2 MEASURED VALUES OF DONOR IONIZATION
ENERGIES FOR Si AND Ge (meV) ([6]).

Ionization Energy (meV)

Semiconductor P As Sb

Ge 12.0 12.7 9.6
Si 45 49 39

Figure 5.21 Real-space energy band diagram showing acceptor level.

can move into the hole. and so the impurity is called an acceptor. From a band diagram
perspective. the acceptor impurity energy level lies just above the valence bandedge, as
shown in Fig. 5.21. For a silicon lattice. typical values of Ea E?, are on the order of 0.05
eV (e.g., if the dopant is boron. E(1 — E 0.45 eV. Acceptor ionization levels can be
determined from (5.45) using the effective mass of holes. The resulting material is known
as a p type semiconductor.

5,42 Interacting Systems Model

There is another way to view bandstructure that is often helpful, especially in understanding
how two systems interact when brought together. It turns out that if a quantum system has
energy levels E1 E2. E3. . . then if two such identical systems (perhaps two atoms, or
two quantum wells) are brought together, it can be shown that each energy level will split
into two levels,

E,1 — E. E, (5.46)

where E, is an energy value slightly above/below the energy value E17 of the isolated
system. This is depicted in Figs. 5.22 and 5.23.

In Fig. 5.22, two identical systems, each having energy levels E1 and E2, are spaced
sufficiently far apart so that they don’t interact. Then, if the systems are brought near to

System I System 2

E1 E1

0

00

0

C .0

Figure 5.20 Part of a Group IV element lattice with the insertion of a Group III element. The double
parallel lines indicate a covalent bond. One “extra’ hole will be present. loosely bound to the Group ifi
atom.

Figure 5.22 Two identical quantum systems. each having two energy levels, are spaced far apart.
No interaction occurs.
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(5.49)

where each group is centered on the corresponding isolated atomic level, E11. As N — 00,

the N discrete levels centered on each E,7 merge into a quasi continuum of allowed energy

levels, forming an energy band centered on E,7. If two adjacent levels of the original, widely

spaced system, say. E, and E÷1, are well separated in energy, then the resulting energy

bands centered on E and on E,1 will not overlap, creating a bandgap. This is depicted in

Fig. 5.25. where the s and p states of an atomic shell in an atom (Section 4.6.2) split into

separate s and p bands in a solid. The top half of either resulting band (s or p in Fig. 5.25)

is the antibonding half. and the bottom half is the bonding half.

If, for example. the atomic s shell in Fig. 5.25 is partially filled (i.e., an ns1 shell),

then the resulting s band will be partially filled (the bonding half). resulting in a conductor.

if the shells in question are full (e.g.. ns2), then the resulting bands will be full, usually

resulting in an insulator or semiconductor.
However, the situation is often much more complicated. For instance, assume that the

s shell is full, and that the next p shell is empty. The resulting s band will be full, and

the p band will be empty. Howeer, these bands may overlap, allowing conduction. This

158

E System 1 System 2

E

E.

E1

_________

Figure 5.23 The two identical quantum systems from Fig. 5.22
resulting in energy level splitting.

159

Ei

are brought into close proximity.

If N identical atoms are brought together, each energy level of an isolated atom,

E1. E2.E3,..., will split into N levels,

E11 E3,1

E1,2
—* . —* . —

each other, as depicted in Fig. 5.23. the energy levels split as

— E7. E.

E2 E, E2.

(5.47)

(5.48)

The splitting is due to the overlap of each system’s wavefunctions (really orbitals, as
discussed in Section 3.5). For example, in the case of two atoms that come together to form
a molecule, the atomic orbitals associated with each atom begin to overlap as the atoms are
brought together. This can be seen by considering a simplified linear model of forming a
lithium (Li) molecule. Lithium has the electronic configuration 1s22s1, and in forming the
molecule Li2, the s shell atomic orbitals form antibonding and bonding molecular orbitals,
as depicted in Fig. 5.24(a). In the ground configuration, the bonding molecular state is filled
with the two 2s’ electrons (one from each atom), and the antibonding state is empty, as
depicted in Fig. 5.24(b).

Li Li

£

p band

lE

t

(a) (b)

Figure 5.24 Depiction of combining atomic orbitals of lithium to form molecular states of Li2. (a)
Two Li atoms are brought into close proximity. The atomic s shells interact, forming antibonding (top)
and bonding (bottom) molecular orbitals. The 2s1 electron from each atom will go into the lowest
energy state, as depicted in (b).

Energy gap

1

3 4 S

s band

6

Number of atoms

Figure 5.25 Depiction of s and p states in an atomic shell splitting into s and p bands as atoms are

brought together to form a solid.
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happens in. for example. Mg. which has the atomic configuration11s22s22p63s23p° (i.e.,
full s shell, empty p shell) and yet is a metallic solid due to band overlap. Moreover, j
is often energetically favorable for atomic states to become mixed (hvbridiced) in forming
atomic bonds. This often occurs when the s and p shells are sufficiently close in energy such
that the atomic orbitals can interact, resulting in sp molecular orbitals. This is extremely
common, and occurs in most semiconductors.

The idea of combining atoms to form molecules and solids can be made quantitatively
accurate by a method known as the linear combination of atomic orbitals (LCAO). although
this is beyond the scope of the text. Nevertheless. it is an intuitively appealing model, since
in the limit of large separation we expect that systems will not interact. but will begin to
interact as they are brought closer together.

5.4.3 The Effect of an Electric Field on Energy Bands

In order to analyze electronic devices, we must be able to understand the effect of applying
an electric field or a potential difference to a material. For simplicity, we will consider a one
dimensional example and a constant electric field E = aéo. From basic electrostatics, the
work done (energy expended) in moving a charge q from 0 to x in the presence of the field is

x x

W(x) = — F .dl= — (aqé’o) . adx =

0 0

where F = qE is the force on the charge q by the fieldt E. For an electron, q = —e <0,
and energy —qEox = e’ox is required to move the electron against the field. The energy
required to move the electron to the point x increases linearly as x increases. In moving in
the opposite direction, the electron gives up energy to the field.

Figure 5.26(a) shows an electron in the conduction band of a material, To accommo
date the idea of needing to linearly increase the electron’s energy if it is to move in the
positive x-direction, and decrease its energy in moving in the negative x-direction. we tilt
the energy band diagram under the influence of the applied field, as shown in Fig. 5.26(b).
We can think of the tilted bands as encouraging the electrons to “roll downhill,” or requir
ing an energy input to climb uphill. From a voltage standpoint, positive voltage depresses
(pushes down) the energy level.

5.4.4 Bandstructures of Some Semiconductors

Given the importance of semiconductors in electronics applications, we will very briefly
examine the band structure of several types of semiconductors.

3p° and higher shells are not usually listed, although it was included here to emphasize the point that the

.c shell is full and the next p shell is empty.
Since voltage is work per unit charge. V v) W (v) /q (referenced to V tOt = 0): if we know the

potential V rather than the electric field E. energ is simply q V. Be aware that the s mbol V can represent voltage

or potential energy. although usually its meaning is clear from the context.
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Figure 5.26 a) Real-space hand diagram in the absence of an applied electric field. (b) Real-space

band diagram in the presence of an applied field ‘o.

For most semiconductors, the top of the valence band occurs at k = 0. However, the

bottom of the conduction band may occur at some other value of k. and we can divide

semiconductors into two general categories.

Direct bandgap semiconductors are such that the bottom of the conduction band occurs

at k = 0, as shown in Fig. 5.27, where E and E, are the conduction and valence bandedges,

respectively, and where the bandgap is Eg E Ev . For a direct bandgap semiconductor,

near k = 0 the energy bands can be modeled by

E (k) 2 E( + , conduction band (5.51)
2m

E (k) — —-, valence band.
2rn1,

Materials such as GaAs and InP are direct bandgap semiconductors. (The bandstructure for

GaAs is shown in Fig. 5.12 on p. 143.)
Indirect bandgap se,niconducto,’s are semiconductors for which the bottom of the

conduction band does not occur at k = 0. but at some other wavenumber value, as shown

in Fig. 5.28. Semiconductors such as Si. Ge, and AlAs are indirect bandgap semiconduc

tors. (The bandstructure for Ge and Si is also shown in Fig. 5.12.) Actually. silicon has a

complicated bandstructure, and the bottom of the conduction band occurs at six equivalent

minima in k-space, resulting in six conduction band valleys.

Indirect semiconductors highlight the difference between crystal momentum and par

ticle momentum, since at the bottom of the conduction band in an indirect semiconductor.

the particle momentum is zero, although the crystal momentum hk is nonzero. Particle

momentum notwithstanding. the electron dynamics are governed by the equation of motion



Section 5.4 Band Theory of Solids 163Chapter 5 Electrons Subject to a Periodic Potential

band

If,

Figure 5.27 Energy bands (wavenumber space) for a typical direct bandgap material (light and heavy
hole valance bands are shown).

involving the crystal momentum (5.34). The bandgap properties of several important semi
conductors are given in Table 5.3.

Considering the conduction and valence bands, it should be noted that electron kinetic
energy is given by E — > 0, and hole kinetic energy by E — E > 0, as depicted in
Fig. 5.29.

5.4.5 Electronic Band Transitions—Interaction of Electromagnetic Energy
and Materials

So far, we have been considering primarily materials in thermal equilibrium, where electrons
and holes have, on average, thermal energy corresponding to the temperature of the material,
When an electron is thermally excited from a lower state (the valence band, or an impurity
level) to the conduction band, the electron is available to contribute to conduction. In general,
the electron will exist in the conduction band for some period of time before falling to a
lower state, a process called recombination (as in an electron recombining with a hole). For a
material in thermal equilibrium, the generation rate of carriers is equal to the recombination
rate, so that the carrier concentration remains constant.

Conduction band

Figure 5.28 Energy bands (wavenumber space) for a typical indirect bandgap material.

TABLE 5.3 BANDGAP PROPERTIES OF SEVERAL IMPORTANT

SEMICONDUCTORS. FOR GAP TYPE, I INDICATES AN INDIRECT

BAN DGAP SEMICONDUCTOR, AND D A DIRECT GAP

SEMICONDUCTOR.

Crystal Gap type Eg (eV) @ 0 K E5 (eV) @ 300 K

Si 1 1.17 1.11

Ge I 0.74 0.66

GaAs D 1.52 1.43

InP D 1.42 1.27

AlAs 1 2.23 2.16

CdS D 2.58 2.42

CdSe D 1.84 1.74

CdTe D 1.61 1.44

162

If E

Valence band

k’0 k

Valence band

k=O k



Electroneticenerv

oj

Hole kinetic energy

Increasing hole energy

Figure 5.29 Depiction of electron and hole energy.

Nonequilibrium conditions refer to the presence of charge carriers by other means,
typically by either direct electrical injection, or by electromagnetic processes (e.g.. photons
incident on the material). Since the interaction of electromagnetic energy and materials is
obviously very important in electrical applications, in this section, a brief survey of several
important interaction mechanisms will be provided.

Direct Bandgap Semiconductors. Figure 5.30 shows typical energy band dia
grams for a direct bandgap material, where (a) depicts the energy bands in real space and

E

(a) (b)

Figure 5.30 (a) Several possible band transitions as shown on the real-space band diagram. (b) The
same transitions in wavenumber space.

b shows the energy bands in wavenumber space. Three possible transitions arising from the

interaction of a photon and the material are depicted. denoted as Tl—T3. In all transitions.

ve must have conservation of energy and momentum.

Ti inVolveS a transition from the valence bandedge (or below) to the conduction

bandedge (or above). It is a direct transition, involving absorption of a photon. To elevate

an electron from the valence bandedge to the conduction bandedge requires an energy input

of E = E — E . Energy conservation requires that

ho) E.

for a bandedgetobandedge transition (at k = 0), where /1w is the energy of the incident

photon. Photons having larger energies can cause larger transitions (i.e. . perhaps from deeper

in the valence band. or to deeper in the conduction band. or both). This can result in particles

gaining kinetic energy (the excess energy measured from the bandedge). or energy going

into lattice ibrations.
For the direct xertical transition TI shown. conservation of momentum. which, via de

Broglies relation (2.15) corresponds to conservation of wavevector, states that

Ak =

where Ak is the change in the electron’s wavevector, and k,)1 is the wavevector of the

photon. For optical photons. where 400—700 nrn. the photon wavevector is in the

range

2rt 6 1k1,1 = :— 1.5 x 10 — 9.0 x 10 m

However. electron wavevectors tend to be much larger. For example. for a crystal with

lattice constant a = 0.5 nm, at the Brillouin zone boundary. the electron’s wavevector is

ke6.28x109m I

So k,,1 is rather small on the scale of the first Brillouin zone. and so. approximately. Ak = 0.

Thus. we get the ertical transition shown as TI in Fig. 5.30(b). This type of transition can

be used to measure the bandgap of a direct bandgap semiconductor, by determining the

smallest energy of photons that are absorbed by the semiconductor.

Transitions T2 and T3 represent possible transitions associated with impurity states.

These impurities can be defects in the lattice, donor or accepter atoms, or other elements

that may be present. This leads to the creation of impurity states in the bandgap. localized

in positions that physically correspond to the location of the impurity. Therefore, the uncer

tainty in position of the impurity (say. Ax) is small, and, via the uncertainty principle, the

uncertainty in Ak will be large. This is why the impurity level is depicted as being spread

The same tpes of transitions can occur thermally, as previously discussed. However, considering that

room temperature thermal energy is approxiniatelv 25 meV. only relatlvel3 small thermal transitions are likels.
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over a relatively wide range of wavenumbers in Fig. 5.30(b), but over a small range of
positions in Fig. 53O(a).

Of course, although we have considered absorption of a photont and elevation of an
electron to a higher electronic state, the reverse process can also occur. That is, an electron
can fall from an elevated state to a lower energy state by emitting a photon. This is the idea
behind, for example. laser operation and material fluorescence. In fact, often an electron is
raised to a point higher in the conduction band by absorption of a photon, and rapidly falls
down to the bottom of the band by emitting quantized lattice vibrations (phonons), a process
that is known as nonradiative relaxation. The electron then may fall from the bottom of the
conduction bandedge to the ‘ alence band, by, for example, emitting a photon. Other types
of transitions are also possible.

Indirect Bandgap Semiconductors. When one considers the interaction of
energy and an indirect bandgap semiconductor, such a Si or Ge, the model changes some
what. As depicted in Fig. 5.31, the transition from the top of the valence band to the
bottom of the conduction band (i.e., the minimum energy transition) cannot be a vertical
transition in wavenumber space. Because of the small wavevector associated with photons,
photons enable essentially vertical transitions, providing energy but not enough momentum
(wavenumber) for the necessary indirect transition. Some other interaction will be neces
sary for the transition to occur, and the answer is pros ided by phonons, which provide
the necessary change in wavevector. Phonons have relatively large wavevectors, although
their energy is typically low, and so phonons result in, essentially. horizontal transitions.
Therefore, we have a three “particle” interaction: the photon. the phonon, and the electron.
In a classiLal model, vt e would vicw the transition as arising from the interaction of the
electromagnetic field, the electron, and the vibrating lattice, In the quantum model, we quan
tize the electromagnetic field as a photon, we quantize the vibrating lattice as a phonon,
and the mutual interaction of these with the electron results in the transition, as depicted in
Fig. 5.31. Consers ation of energy and momentum results in

AE = Ii (w +

where 1lw1, is the energy of an absorbed photon, and hw is the energy of an absorbed

(+) or emitted (—) phonon.
Note that the absoiption of the photon alone puts the electron in the band gap, where,

based on the previous theory, there are no electron states. A more sophisticated analysis
would show that virtual states can exist within the bandgap. These states don’t correspond

It is worthwhile to note that the idea of energy level transitions explains why materials are opaque at some
frequencies and transparent at others. If the incident photon energy does not result in any energy transitions (and
here we need to consider not just the interaction of photons and electrons. but also the interaction of photons and
other quasi particles such as phonons), then the photon is not absorbed. The photon can therefore pass through the
material, i.e., the material is transparent to that energy. This explains, for example, why a material that is opaque
to visible light will usually be relatively transparent to lower frequency (lowerenergy) electromagnetic waves, and
thus, although we can’t see through walls, we can receive cell phone calls in buildings.

Figure 5.31 Transition in an indiiect semiconductor ins olving a phono ad a photon Because of

the small was esector associated with the photon a phonon is .cquircd to prvide the ccessary chang

in waves ector

to propagating waves, but decay exponentially with time. so that the electron must interact

with a phonon very quickly in order to scatter into the conduction band. This makes the

transition rate for indirect transitions much smaller than for direct transitions,

Aside from bandedge-to-bandedge absorption as considered earlier. even in indirect

semiconductors electrons can be elevated from the valence band directly to the conduction

band at the same k value (i.e., by a vertical transition), although obviously this will occur

at relatixely high energies (higher then the bandgap energy). Although we won’t discuss

the transition rate in detail, there is a way of calculating how likely a transition is to occur,

This is given by Fermi’s golden rule, which states that the transition rate is proportional to

a factor relating to the was evectors of the two states in question, and to the joint density

of states. (Density of states is discussed in Section 8.1.) In particular, over portions of the

E—k plot where conduction and salence bands are essentially parallel, the same photon

energy E can result in transitions for many different k s alues (thus leading to a large joint

density of states), and the transition rate will be relatis ely large. For example, it can be

seen from Fig. 5.12 on page 143 that silicon has a conduction and valence band that are

approximately parallel, although the separation is on the order of 3—4 eV. Thus, one would

expect absorption to greatly increase in the vicinity of photon energies of 3—4 eV, and this

is indeed found to be the case. The direct absorption in this energy range is much larger

than the indirect absorption near the bandgap energy.
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Excitons. We has e considered band transitions in semiconductors. and it was implic
itly assumed that the process of absorption (of a photon. thermal energy. etc.) created a free
electron and a free hole, each of which can contribute to conduction. There is another effect
that is worth mentioning, primarily because of its importance in quantum-confined structures
such as carbon nanotubes and quantum dots, The basic idea is that after an electron transition, it
is possible for the electron and the created hole to be bound together by their mutual Coulomb
attraction, forming a quasi particle known as an exciton. (See Chapter 9 for a discussion of
excitons in quantum-confined structures.)

The two-particle electron-hole exciton can be modeled like the two-particle hydrogen
atom considered in Section 4.6.1. However, unlike the hydrogen atom, which consists of one
proton and one electron (having greatly different masses) in empty space, here the bound
electron—hole pair moves through a material characterized by relative permittivity Er, as
depicted in Fig. 5.32.

Considering the formulas for energy and Bohr radius of the hydrogen atom. (4.115)
and (4.117). and substituting ErEO in place of EU and the reduced mass

=

or ± ,17

in place of “1e then the binding energy and radius of the ground state exciton are given by

rn
E=- re?Rrl36eV

8rr31z2n2 meE

00

/

0 0(0 p oo
QQ\QQ

0 000
Figure 5.32 Depiction of a bound electron—hole pair known as an exciton The exciton radius is
much larger than the lattice constant.

The macroscopic model of permitti ity is appropriate here since the average separation of the electron and
the hole is much greater than the lattice constant.

where Ry is the Rydberg energy and 00 is the Bohr radius.

As an example, for GaAs (r1 = 13.3), using an average of the heavy and light hole

masses. = O.OSO2me, we find that

The binding energy of the pair, E, can be easily overcome by thermal effects (e.g., kB T 25

meV at room temperature), thus breaking the exciton into free electrons and holes. Therefore,

in bulk materials, exciton effects are usually only observed at very low temperatures,tand

for relatively pure samples (since impurities such as dopants tend to screen the Coulomb

interaction, much as occurs in conductors).

To demonstrate the concept of optical absorption by bandgap transitions and excitons.

the absorption coefficientr versus incident photon energy for GaAs is shown in Fig. 5.33 for

various temperatures. At room temperature. one can observe the lack of absorption below

Figure 5.33 Absorption coefficient versus incident photon energy for GaAs at various temperatures.
At room temperature. one can observe the lack of absorption below the bandgap. At low tempera

tures, the peaks at the onset of absorption are due to excitons. (Based on Figure 6.8 (page 55) from

Band Theory and Electronic Properties of Solid.s by John Singleton, Oxford University Press, 2001.

Reprinted with permission from John Singleton and Oxford University Press. Data from M.D. Sturge,

Phys. Rev. 127. 768 (1962).)

Herc we consider “free” excitons, known as Wannier—Mott excitons, which occur in semiconductor.

Another type. known as Frenkel excitons, have a much smaller radius and can be stable at room temperature,

although these are not of interest here.
TThe absorption coefficient is defined to be the fraction of power absorbed per unit length of a material.
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the bandgap (Eg = 143 eV). At low temperatures, the peaks at the onset of absorption are
due to the creation of excitons.

5.5 GRAPHENE AND CARBON NANOTUBES

Since the relatively recent discovery of carbon nanotubes (CNs). there has been an enormous
amount of research into their fundamental properties, and great excitement concerning their
possible applications. Electronic applications of CNs will be discussed later (e.g., in Sections
6.3.1, 7.3.1 and 10.3), and here we will concentrate on their band structure.

A single-wall carbon nanotube (SWNT) is, roughly speaking, a rolled-up sheet of
graphene, which is a mono-atomic layer of graphite. CNs typically have radius values of
a few nanometers, and lengths (so far> up to centimeters. Multiwalled carbon nanotubes
(MWNTs) are also common, and other related structures exist, such as nanotube ropes
(bundles of nanotubes), although here we will focus on SWNTs.

5.5.1 Graphene

At an atomic level, graphene has the periodic honeycomb structure shown in Fig. 5.34,
where the small circles denote the location of carbon atoms and the lines represent car

bon—carbon bonds. The depicted lattice basis vectors are a1 = (v/lax + a) a/2 and a2 =

Figure 5.34 Graphene sheet (single layer of graphite). The small circles denote the location of carbon
atoms. Lattice basis vectors are a1 and a2, as shown.

Figure 5.35 (a) The unit cell (dotted rhombus) in graphene. (b) The first Brillouin zone in graphene

(shaded region). Both the real-space and reciprocal space structure in graphene consists of hexagons.

(Based on a figure in Physical Properties of Carbon Nanotubes by R. Saito, G. Dresseihaus. and M.S.
Dresseihaus. Singapore: World Scientific Publishing Co. Pte. Ltd.. 1998. Used by permission.)

(i/lax —
a5) a/2. where a = 4/lb and b = 0.142 nm is the interatomic distance between

carbon atoms in graphene.
Since graphene is a two-dimensional periodic material, it has an energy band structure

similar to the three-dimensional crystalline solids discussed previously. The unit cell and

first Brillouin zone are shown in Fig. 5.35, where the high-symmetry points in the Brillouin

zone are

/2rt 2t /22t
F=(0,0), K=f—,—). M=(—,0

\i/la 3aj

The Fermi surface is really a collection of points, the six points of the hexagonal Brillouin

zone, where E = EF = 0. (See problem 5.21.)

The most important bands arise from the so-called t—orbitals, and for these bands.

the two-dimensional E—k relationship is well approximated by

w(lc )
(v”lkxa) ka\-, = 1 +4 cos

2
cos (--) +4 cos2

s 0.129, Yo 3 eV, and where the upper and lower signs correspond to the bond

ing/antibonding bands. (See Section 5.4.2.) In the important vicinity of the Fermi points,

this can be approximated as

E (kr. k5) = ±yow (kr, ky),

(a) (b)

(5.59)

where

E (kr. k)
= +YoW (kx, k5)

1 + sw (k5.k5)
(5.60)

(5.61)

(5.62) *
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Figure 5.36 Calculated bandstructure of the r- and a-bands in graphene. The F point is k = (0, 0),
and the K and M points are shown in Fig. 5.35 (Based on a figure in Physical Properties of Carbon
Nanotubes by R. Saito. G. Dresselhaus, and MS. Dresseihaus. Singapore: World Scientific Publishing
Co. Pte. Ltd.. 1998.)

and from either (5.60) or (5.62). it is easy to plot the energy band behavior of the n electrons.

(See problem 5.21.) The t orbitals arise from electrons that are weakly bound to the carbon
atoms. It is these electrons that are of most importance in electronic applications, since a
small amount of energy can free them for conduction. Electrons more strongly held to the
carbon atoms are known as a electrons, and these play an important role at higher energies.
The band structure of both Tt- and a-electrons in graphene is shown in Fig. 5.36.

It is particularly important to note the nearly linear dispersion of the TE bands near the
K point. Hence, rather then the usual parabolic dispersion for an electron in free space or
in a material. E =h2k2/2rn*. dispersion for electrons near the K point in graphene is

E = vlik. (5.63)

where VF 9.71 x iO mis is the Fermi velocity of electrons (to be discussed later). For
photons, from (2.25),

E = chk, (5.64)

where c is the speed of light, and so near the Tu-band crossing point electrons act more like
photons than particles with mass. In this case the electrons are called Dirac fermions, and
their properties are of interest in recently-developed graphene devices.

Figure 537 Depiction of forming a carbon nanotube by rolling a graphene sheet into a tube. (Based

on a figure in Physical Propertie5 of Garbon Nanotubes by R. Saito, G. Dresselhaus. and M.S. Dres

selhaus. Singapore World Scientific Publishing Co. Pte, Ltd., 1998. Used by permission.)

It is obvious that the CN cylinder can be formed by wrapping the graphene sheet

along any preferred axis. If the cylinder axis is the .v axis in Fig. 5.34. the resulting tube

is called a zigzaç CN because at an open end of the tube the carbon—carbon bonds would

form a zigzag pattern. If the cylinder axis is the y axis in Fig. 5.34, the resulting tube is

called an armchair (‘N, and if the cylinder axis is neither the x nor the y axis as shown,

the resulting nanotube is called a chiral (‘N. Thus, carbon nanotubes can he characteriied

by the dual index (n. in). where (a. 0) for zigzag CNs, (ii. a) for armchair CNs. and (a. m).

0 < in a. for chiral nanotubes. as depicted in Fig. 5.38.

The values of n and in denote, respectively, the number of unit vectors a1 and a2
required to make the tube. The resulting cross-sectional radius of a carbon nanotube is

given by

5.5.2 Carbon Nanotubes

A carbon nanotube is formed by wrapping the graphene sheet into a cylinder, as depicted
in Fig. 5.37. by connecting points 0 and A and B and B’. The circumference of the tube

is related to the length of the chiral vector, C,, = na1 + ma2. where a. ni are integers.

(5.65)r=4=bVm+m2
2t 2rt

.An armchair, zigzag. and chiral CN are shown in Fig. 5.39. Also, shown in the figure is a

multi-wall (‘N.
Since graphene is a two-dimensional periodic structure, upon forming an infinite tube.

we have a periodic structure in the axial direction and a finite structure in the transverse

direction. It can be shown that the lattice constants are a0 = a = Iib for armchair tubes

and a.- = x/a = 3b for zigzag tubes, and, therefore, the edge of the first Brillouin zone

occurs at k = rr/a0 for armchair tubes, and k = rt/a for zigzag tubes. In the transverse

direction. the wavenumber becomes quantized by the finite circumference of the tube. and

Carbon nanotubes form naturally in. for example. the arc discharge of carbon electrodes, and are not made
by literally rolling graphene sheets into cylinders.

The interatomic distance b = t). 142 nrn in graphene becomes slightl\ larger in a carbon nanotube. and the

salue b = 0.144 urn is often used.
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Figure 538 Forming armchair. Lig/ag, and chiral carbon nanotubes, denoted by the index (n, in).

Metal and semiconducting tubes are denoted by hollow and solid circles, respectively. (Based on a
ligure in PhvsiLai Properties of Carbon Aanaiiibes b R. Saito. G. Dresseihaus. and MS. Dresselbaus.
Singapore: World Scientific Publishing Co. Pte, Ltd.. 1998. Used by permission.)

D

Figure 539 (A) armchair CN, (B) zigzag CN. (C) chiral CN, (D TEM image of a 1.3 urn diam
eter chiral CN. (E) TEM image of a multi-a1l CN. consisting of nine concentric single-wall CNs.
Courtesv Shenzhen Nano-Technologies Port Co.. Ltd.)

for the zigzag tube. The E — k relations for the rr electrons in a nanotube result from

plugging (5.66) or (5.67) into (5.62), such that for armchair tubes we have

E0(k) = ±YQ/l +4 () (kza)
+4cos2

(ka)
cos — cos

11

/ fk1a\ nq
E- (kr) = 1 + 4cos

2 ) cos (i-) + 4cos- (—).

—
< , q = 1. 2 2n. These are approximate relations, since, among other

things, the effect of tube curvature on atomic bonds is ignored, although (5.68) and (5.69)

turn out to be generally quite accurate. The dispersion behavior is considered in prob

1cm 5.24, although in general it is found that carbon nanotuhes can be either metallic or

serniconducting. depending on their geometry (i.e.. on ii. ,n). Armchair CNs are always

metallic (they exhibit no energy bandgap). as are zigzag CNs ith ii = 3p. where p is

an integer. Chiral tubes can be either metallic or semiconducting depending on the (ii. in)

values, and a general rule is that tubes where (2iz + in) /3 is an integer are metallic.t

Semiconducting tubes have energy bandgaps given by

‘fo” 0.383
Eg — eV.

2x/r d1

where d is the tube radius in nm.
Carbon nanotubes are held together by the carbon—carbon bonds. and thus they exhibit

extraordinary strength. In fact. CNs are many times stronger than steel. They also have very

high thermal conductivity and stiffness. Their rather extraordinary properties are in part due

to the fact that they can be grown to be nearly defect free. (However, see the discussion in

Section 10.3.) For example. metals tend to exhibit failure well below their theoretical limits.

For graphene, y a 3 eV. For carbon nanotubes. the corresponding s aloe changes due to cursature effects,

and is usually taken to be in the range 2.5 3.0 eV.
Graphene itself is a serninietal also called a zero bandgap semiconductor). exhibiting properties between

a metal and a semiconductor. This is why. merely depending on how’ the cylinder is wrapped. the resulting tube

can be either metallic or semiconducting. Semiconducting CNs have bandgaps ranging from a few’ meV up to. on
the order of. an eV. and metallic CNs tend to have serv high conductivities.

5The described characterization of tubes as being metallic or semiconducting is based on the simple idea

of rolling up a graphene sheet without. essentialh. changing its atomic structure. This is valid for relativelx large-

radius tubes (above perhaps a nanometefl, although for small-radius tubes the large radius of curvature hbridizes

the and a—orhitals. and deviations to the presented theory are encountered. For example. whereas a (5. 0 tube

should be semiconducting based on the simple analysis, it is actually found to be metallic. Moreover, some zigzag

tubes that should be metallic by the simple mode are actually semiconducting. See, e.g.. [161.
Furthermore. the analysis assumes infinitely long tubes. Finite length tubes having lengths less then approx

imately 10 nm tend to act more like quantum dots (zero-dimensional structures) rather than quantum wires

(one-dimensional structures).
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0: metal •: semiconductor

—o’t < ka < rr. q = 1.2 2n. and for zigzag tubes.

(5.68)

E

(5.69)

is given by

(5.70)

.,—.‘
k =k =. q=l.2 2ii

“ n3b

ftr the armchair tube (in = ii), (see problem 5.23) and

2rtq
k q=l.2,..., 2n

(5.66)

(5.67)
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due to defects. High quality (nearly molecularly perfect) CNs can be formed that perfon
near to their theoretical limit. which results in extremely attractive mechanical and electrical
properties. Carbon nanotubes are the stiffest known fibers. and exhibit the highest tensile
strength of any known material. The Youngs modulus of CNs have been measured to be
more than an order of magnitude larger than that for steel. Furthermore. carbon nanotubes
can carry ery high current densities (much higher than typical metals). at lO A/cm2 or
more. without melting. For comparison. copper is generally limited to 106 A/cm2 due to
heating and electromigration effects.

For the semiconducting tubes, electronic properties can be controlled by doping, as
in a conventional semiconductor. Doping can be introduced chemically by exposing the
CN to certain elements. or by inserting molecules inside the tube. One inherent differ-
ence between serniconducting CNs and ordinary serniconducting materials is that at room
temperature. the undoped CN tends to be a p-type material. It was first thought that this
behavior s as due to chemical contamination. such as adsorbed oxygen. However, it is now
thought that the origin of the p-type behavior is due to what is known as self-doping,

caused by the curvature of the tube at the nanoscale and the commensurate effect on atomic
bonding.

Carbon nanotubes can currently be fabricated using a variety of techniques including

carbon arc discharge, laser evaporation, and chemical vapor deposition. Often, however, a
mixture of semiconducting and metallic tubes are produced, which must be separated and
isolated for use. Making good electrical contact between carbon nanotubes and electrodes
can be problematic, as is positioning of the tubes in device fabrication.

5,6 MAIN POINTS

This chapter presents some important concepts from solid state physics. and, in particular,
the formation of energy bands in periodic structures. After studying this chapter you should
know

• the principles of various crystal structures;

• the effect of a periodic potential on electron properties. and the Kronig—Penney model;

• the band theory of solids;

• the concept of effective mass, and what effective mass accounts for. including the use
of effective mass in Schrodinger’s equation:

• the effect of an electric field or of an applied electrical potential on energy band
structure:

• energy band models for typical semiconductors, including the concept of direct and

indirect bandgaps;

• the interaction of electromagnetic energy with an energy band system. including the
role of vibrational modes (phonons):

• the basic r band structure of graphene:

• the band structure of rt electrons in carbon nanotubes.
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5,7 PROBLEMS

1. To gain an appreciation of the important role of surface effects at the nanoscale,

consider building up a material out of bcc unit cells. (See Section 5. 1 .) For one bcc
cube, there would be nine atoms, eight on the outside and one interior. as depicted
on page 1 34. If we constrain ourselves to only consider cubes of material, the next
largest cube would consist of eight bcc unit cells, and so on. If one side of the bcc
unit cell is 0.5 nm, how long should the material’s side be in order for there to be

more interior atoms than surface atoms?

2. Considerthe Kronig—Penney model ofa material witha1 = a2 = 5 A and V0 = 0.5 eV.

Determine numerically the starting and ending energies of the first allowed band.

3. Use the equation of motion (5.34) to show that the period of Bloch oscillation for a

one-dimensional crystal having lattice period a is

h
-t = —, (5.71)

eSa

where is the magnitude of the applied electric field.

4. Determine the probability current density (Aim) from (3.187) for the Bloch wave-

function

(x) = U (x) e1e_b0)t, (5.72)

where a is a time-independent periodic function having the period of the lattice,

u(x)=u(x+a). (5.73)

5. If an energy—wavevector relationship for a particle of mass in has the form

E = —k2, (5.74)
3m

determine the effective mass. (Use (5.29).)

6. If the energy—wavenumber relationship for an electron in some material is

E= ---cos(k), (5.75)
2m

determine the effective mass and the group velocity. (Use (5.29).) Describe the motion

(velocity, direction, etc.) of an electron when a d.c. (constant) electric field is applied

to the material, such that the electric field vector points right to left (e.g., an electron in

free space would then accelerate towards the right). In particular, describe the motion

as k varies from 0 to 2t. Assume that the electron does not scatter from anything.

7. If the energy—wavenumber relationship for an electron in some material is

E = E0 + 2A cos (ka), (5.76)

determine the electron’s position as a function of time. Ignore scattering.



178 Chapter 5 Electrons Subject to a Periodic Potential Section 5.7 Problems 179

where ‘1e S the mass of an electron in free space. Write down the time-independent
effective mass Schrodinger’s equation for one electron in the first Brillouin Zone,
ignoring all interactions except between the electron and the lattice. Define all terms
in Schrodinger’s equation.

9. Assume that a constant electric field of strength S = — 1 kV/m is applied to a material
at t = 0, and that no scattering occurs.

10. Using the hydrogen model for ionization energy, determine the donor ionization
energy for GaAs (m = O.O67rne, Er 13.1).

ii. Determine the maximum kinetic energy that can be observed for emitted electrons
when photons having . = 232 nm are incident on a metal surface with work function

12. Photons are incident on silver, which has a work function e = 4.8 eV. The emitted
electrons have a maximum velocity of 9 x iO mis. What is the wavelength of the

incident light?

13. In the band theory of solids, there are an infinite number of bands. If. at T = 0 K,
the uppermost band to contain electrons is partially filled, and the gap between that
band and the next lowest band is 0.8 eV. is the material a metal, an insulator, or a
semiconductor?

14. In the band theory of solids, if. at T = 0 K, the uppermost band to have electrons is

completely filled, and the gap between that band and the next lowest band is 8 eV,

is the material a metal, an insulator, or a semiconductor? What if the gap is 0.8 eV?

15. Describe in what sense an insulator with a finite band gap cannot be a perfect

insulator.

16. Draw relatively complete energy band diagrams (in both real space and momentum
space) for a p-type indirect bandgap semiconductor.

17. For an intrinsic direct bandgap semiconductor having Eg = 1.72 eV. determine the

required wavelength of a photon that could elevate an electron from the top of the

valence band to the bottom of the conduction band. Draw the resulting transition on

both types of energy band diagrams (i.e.. energy—position and energy—wavenumber
diagrams).

18. Determine the required phonon energy and wavenumber to elevate an electron from

the top of the valence band to the bottom of the conduction band in an indirect

bandgap semiconductor. Assume that Eg = 1.12 eV, the photon’s energy is =

19. Calculate the wavelength and energy of the following transitions of an electron in
a hydrogen atom. Assuming that energy is released as a photon, using Table 1, on
page 4 classify the emitted light (e.g.. x-ray, infrared (IR), etc.).

8. Consider an electron in a perfectly periodic lattice, wherein the energy—wavenumbe

relationship in the first Brillouin zone is

E = —, (7>
Sme

0.92 eV, and that the top of the valence band occurs at k = 0, whereas the bottom
of the conduction band occurs at k = ka.

(a) Solve the equation of motion (5.34) to determine the wavevector value at t

1,3,7, and 10 ns.
(b) Assuming that the period of the lattice is a = 0.5 nm, determine which Brillouin

zone the wavevector is in at each time. If the wavevector lies outside the first
Brillouin zone, map it into an equivalent place in the first zone.

5 eV.

(a) a = 2 —+ a = 1
(b) ii = 5 —÷ ii = 4
(c) ii = 10 —* a = 9
(d) a = 8 —* ii = 2
(e) ii = 12 — n = I
(f) ii = 00 — Ti = 1

20. Excitons were introduced in Section 5.4.5 to account for the fact that sometimes
when an electron is elevated from the valence band to the conduction band, the
resulting electron and hole can be bound together by their mutual Coulomb attraction.
Excitonic energy levels are located just below the band gap, since the usual energy to
create a free electron and hole, is lessened by the binding energy of the exciton.
Thus, transitions can occur at

1n,
E = — —-l3.6 eV. (5.78)

111eEr

where Eg is in electron volts.t

(a) For GaAs, determine the required photon energy to create an exciton. For m,

use the average of the heavy and light hole masses.
(b) The application of a d.c. electric field tends to separate the electron and the hole.

Using Coulomb’s law, show that the magnitude of the electric field between the
electron and the hole is

/m\2 2 R1
(5.79)

\llleJ E kieI am

(C) For GaAs. determine !1 from (5.79). Determine the magnitude of an electric
field that would break apart the exciton.

21. The E—k relationship for graphene is given by (5.62). The Fermi energy for graphene
is Ep = 0, and the first Brillouin zone forms a hexagon (as shown in Fig. 5.35),
the six corners of which correspond to E = EF = 0. The six corners of the first
Brillouin zone are located at

2rt
= ±—. k = ±—. (5.80)

3a

and

4ru
k = 0. k = ±—. (5.81)

3a

5The quantity 13.6 should really be replaced by 13.6/n2,where n is the energy level of the exciton. Here
we consider the lowest level exciton (n = 1). which is dominant. I



180 Chapter 5 Electrons Subject to a Periodic Potential

(a) Verify that at these points, E = EF = 0.

(b) At the six corners of the first Brillouin zone, 1k! = 4rr/3a. Make a two-dimensional

plot of the E—k relationship for k, k extending a bit past 1k!. Verify that the

bonding and antibonding bands touch at the six points of the first Brillouin zone

hexagon, showing that graphene is a semimetal (sometimes called a zero bandgap

semiconductor). Also make a one-dimensional plot of E (0, k) for — kj
1k!, showing that the bands touch at E = 0 at k = ±47t/3a.

22. What is the radius of a (19. 0) carbon nanotube? Repeat for a (10, 10) nanotube,

Consider an (n, 0) zigzag carbon nanotube that has radius 0.3523 nm. What is the

value of the index n?

23. Since carbon nanotubes are only periodic along their axis, the transverse wavenumber

becomes quantized by the finite circumference of the tube. Derive (5.66) and (5.67)

by enforcing the condition that an integer number q of transverse wavelengths must

fit around the tube (k1 = 2n/).j).

24. Using (5.68) and (5.69), plot the dispersion curves for the first eight bonding and

antibonding bands in a (5, 5), (9, 0), and (10, 0) carbon nanotube. Let the axial

wavenumber vary from k = 0 to k = rr/aac for the armchair tube, and from k = 0
to k = n/a for the zigzag tube. Comment on whether each tube is metallic or

semiconducting, and identify the band (i.e., the q value) that is most important. If

the tube is semiconducting, determine the approximate band gap.

Part

II
SINGLE-ELECTRON

AND FEW-ELECTRON PHENOMENA

AND DEVICES

In previous chapters, Schrodinger’ s equation and the principles of quantum physics were
developed, with an emphasis on single particles (primarily electrons) and collections of
noninteracting particles in different spatial regions. The remainder of the text is divided into
two parts, and presents some basic nanoelectronic applications of these principles. In the
next part, we will be concerned with physical phenomena associated with single electrons,
or small numbers of electrons (perhaps, say, 100_ 10 electrons). The main emphasis is
on electrons confined to nanoscopic spaces, such as quantum dots, and devices constructed
from quantum dots and “charge islands.” Nanoelectronics principles are developed for the so-
called “single-electron” devices, including the single-electron transistor, after the important
concept of Coulomb blockade has been discussed. Although most single-electron devices
are at an early stage of development, especially in the area of manufacturability, they offer
the potential benefits of ultralarge scale integration, with device dimensions on the order
of nanometers. They also may exhibit very low power dissipation, and high speed. All of
these positive attributes arise from the need to move only single electrons, or small groups
of electrons, through devices.

The use of the term “single-electron” device merits some discussion. In conventional
microelectronics, currents are typically on the order of 1 xA to I mA, corresponding to
the movement of 6.25 x 106_6.25 x 10 electrons per microsecond. This occurs through a
device perhaps 100 nm in length. Even considering devices at the upper limit of optical
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