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related material for semiconductor materials is presented. Then, in Chapter 9, we revi it 
quantum well, quantum wire, and quantum dot structures, and discuss implementation 
using semiconductor materials. Important applications of semiconducting quantum dots 
described, especially relating to their optical properties. 

Chapter 10 describes the movem~nt ofcb.arge over nanoscopic (and sometimes larger 
length scales. Of course,/.~e flow or electrical current in wires and in macroscopic circu ~. 
is well known, and the concept of V7§istance iS iintegral to any discussion of current flo~. 
Modeling a material asc having a certain resistivity is a standard technique in electri al 
technology, with the classical conceptiof resistiv\~y being related to electron collisions w~}h 
the material lattice, or \\lith impurities. t The le~gth an electron travels between collisi n 
depends on the material~~d on th~.t~mperaturff' .. but it is generally on the order of tens ; f 
nanometers, or more. However, when device length scales on the order of a few nanometr. 
are of interest, such that, on average, few or no collisions will take place, obviouslyia 
collision-based model will not suffice. This is the regime of what is called ballistic transpof1 
and.in Chapter 10, the general concepts of ballistic transport are described. In this chap~r 
as well, · transport in carbon nariotubes and nanowires is discussed, as is the transport .... f 
spin. 

tHowever, recall that in the quantum model described in Chapter 5, collisions are actually necessary 
frustrate Bloch oscillations and allow current to flow. 
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The local density of states of Fe-covered InAs, obtaine? by S1'M. Voltage values are the various bias 
voltages used. (Courtesy of Prof. Dr. Roland Wiesendanger; Executive Director of the Institute of 
Applied Physics (lAP) and Interdisciplinary Nanoscience Center Hamburg (INCH).) 

In this chapter, the concepts of density of states and particle statistics are introduced. In short, 
density of states relates to how many electronic states are available in a certain structure at 
a certain energy, and particle statistics give the probability that a certain energy state will be 
occupied. Recall that in previous quantum well problems, the allowed energy states were 
obtained (e.g., (4.53)), but there was no way to say which states would actually be "filled" 
by electrons, except if we had a certain number of electrons in the ground state. With the 
concepts developed in this chapter, we can examine how many allowed states are near an 
energy of interest, and the probability that those states will actually be filled with electrons. 
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262 Chapter 8 Particle Statistics and Density of States 

Therefore, density of states and particle statistics concepts are indispensable in the 
bulk materials, and, as previously discussed, have utility when considering relatively 
material samples as well. 

8.1 DENSITY OF STATES 

Considering again the case of an electron in a three-dimensional bounded region of 
(Section 4.3.2), we often find it useful to know how many quantum states lie 
particular energy range, say, between E and E - ~ E. From the equation for energy, 
the number of states below a certain energy En is equal to the number of states 
sphere of radius 

as shown in Fig. 8.1. 
We will consider thehard-wall case with nonperiodic boundary conditions (a = 

in (4.60); theresultsusiIlgperiodic boundary conditions are the same). We only 
first octant of the aforementioned sphere,since sign changes don't lead to additional 
Then, the Jotal number. of states NT .having energy lesf>;than some value (but with E » 
is approximately the volume of the octant, 

NT = ~~Jtn3 =J:( E)3/
2 

83 6 El 

The total number of states having energy in the range (E, E - ~ E) is 

:::: ~ I(E)3/2 -(E - b.E)3/2) 
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Figure 8.1 Electronic states in the ny-nx plane. The states below a certain energy En lie 
circle of radius En/ E1• 
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where we used (l-x)P:::::: 1- px for x« 1. 
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The density of states (DOS), N (E), is defined as the number of states per unit volume 
per unit energy around an energy E. The total number of states in a unit volume in an energy 
interval dE around an energy E is (replacing ~NT, ~E with dNT, dE, respectively) 

so that 

TI E 1/2 
dNT = N (E) dE = 4E3/2 dE, 

I 

TIEI/2 23/2m;3/2 EI/2 

N (E) = 4E3/2 = 411}TI2 
I 

(8.4) 

(since the density of states is per unit volume, we set L3 = 1 in the expression for Ed. 
Accounting for spin, we multiply by 2, such that 

(8.5) 

and if the electron has potential energy Vo, the density of states becomes 

(8.6) 

where E > Vo. The density of states is shown in Fig. 8.2. 
Note that (8.6) was derived assuming the energy relationship (4.54), which holds 

for an electron in an ideal quantum well. More generally, the parabolic E -k relationship 
usually holds for electrons in real materials near the bandedges, which are generally the 
most important energies. However, energy relationships different from (4.54) will result in 
different density of states. For example, electrons at energies removed from the bandedges 
generally do not have a parabolic E -k relationship. Phonons also have a different density 
of states, since their energy equation is different from (4.54). 

To gain an appreciation of (8.6), assuming m; = me we have 

56 Tl 1/2 N (E) = 1.06 x 10 (EJoules - yo) (8.7) 
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N(E) 

~ E 

Figure 8.2 Density of states for a three-dimensional system. 

where EJoules indicates that the energy is in units of joules. Often the DOS is "'''-IJ'''''''''''''"," 

units of eV- 1cm-3, where EJoules = Eev x e. Therefore, 

1 1 J m3 

N (E) = 1.06 x 1056 (EJoules - VO)I /2 - - X -- -----::-
J m3 1 eV (100 cm)3 

e 

= 1.7 X 1031 (EJoules - VO)1 /2 

21 ( ) 1/ 2 = 6.8 x 10 Eev - VO,eV 

For example, if E = 0.1 eVand Va = 0, then N (E) = 2.15 x 1021 eV- 1 cm-3. 

Thinking physically, if there are enough electrons to fill the various states (or, at 
fill the states of interest), then the density of states N (E) is the density of electrons 
energy E. Furthermore, often one is interested in the local density of states (LDOS), 
is the density of states as a function of position in a material. This can be obtained 
STM images by measuring the differential conductance d I / d V, since the tunneling 
is proportional to the local electron density. Such an image is shown on page 261. 

8.1.1 Density of States in Lower Dimensions 

In discussing electron transport in nanosystems we will often need the density of states 
sub-three-dimensional systems. In one dimension, such as for a quantum wire, the 
of states is defined as the number of available states per unit length per unit energy 
an energy E. To be specific, for an electron confined to a line segment of length L, 
(4.35), 
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and the total number of states below a certain energy is equal to the number of states inside 
an interval of length 

NT = n = (:J'/2 (8.10) 

The total number of states having energy in the range (E, E - t1E) is 

,6.NT = _1_ (El /2 _ (E _ ,6. E) 1/ 2) = _1_ (EI /2 _ El /2 (1 _ t1E)I /2) 
EI /2 El /2 E 

1 1 

::::::: _1 (El/2 _ El/2 (1- t1E)) = 1 (t1E) 
E: /2 2E E:/2El /2 2 . 

(8.11) 

The total number of states in a unit length in an energy interval dE around an energy 
E is (again, replacing t1NT, ,6.E with dNT, dE , respectively), 

1 1 
dNT = N(E)dE = - 1/2 dE, 

2 E E1 /2 
1 

(8.12) 

so that 

1 1 ./2m* N (E) = _ = __ e E- 1/ 2 

2 E 1/ 2 E 1/ 2 2lirr 
1 

(8.13) 

(Since the density of states is per unit length, we set L = 1.) Accounting for spin, we 
multiply by 2 to obtain 

(8.14) 

and if the electron has potential energy Va, we have 

./2m* 
N (E) = rrli e (E - VO)-1 /2 , (8.15) 

where E > Va. The density of states for an electron confined to a one-dimensional line 
segment is shown in Fig. 8.3. 

Using similar ideas, we find that the density of states for an electron confined to a 
two-dimensional region of space (such as a quantum well) is 

m* 
N(E) = ~2' 

rrli 
(8.16) 

for E > Va, which is shown in Fig. 8.4. For example, if an electron is confined to two 
dimensions, with m; = me, 

N (E) = me = 2.6 x 1037 

rrli2 (8.17) 
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N(E) 

E 

Figure 8.3 Density of states for a one-dimensional system. 

N(E) 

E 

Figure 8.4 Density of states for a two-dimensional system. 

The previous derivations made use of the fact that, because the structure was large .%l1 
three, two, or one dimension, the energy states En· formed a quasi continuum. That is, 
start with the discrete states En, but then assume that the energy levels are closely spaced in 
obtaining the density of states. HoWever, in a zero-dimensional system (such as a quantum. 
dot), the states are truly discrete (i.e., they don't form a quasi continuum). So in this ca . 
the density of states is merely a delta function, 

n 

where the factor of two accounts for spin. In real qlJantum dots, the infinitely narrow delt 
functions are broadened by electron collisions in the material comprising the dot 

All physically realizable structures are actually three dimensional, and so it 
seem strange to consider low-dimensional systems. However, as discussed previously, thre~E 
dimensional structures that can appropriately confine electrons can implement an effectivel 
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two-, one-, and even zero-dimensional system. The density of states in quantum structures 
will be further discussed in Chapter 9. 

8.1.2 Density of States in a Semiconductor 

We found previously that the three-dimensional density of states for electrons in a constant 
potential Vo (i.e., in an empty box) is (8.6), 

(8.19) 

where E > Vo. In a crystalline solid, this expression also holds because the effective mass 
can account for the crystal structure, and the potential can account for energy bandedges. 
For example, the three-dimensional density of states in a semiconductor is given by 

(8.20) 

(8.21) 

where the SUbscript indicates either the conduction or valence band, m~ v is the effective mass 
appropriate to the band, t E > Ec for Nc, and E < Ev for Nv. For semiconductors where the 
effective mass differs· along different directions, the most appropriate effective mass to use 

is m* = (mrm~m~) 1/ 3, where m7 is the effective mass in the ith direction. For silicon the 
effective mass varies in two directions, resulting in the longitudinal and transverse effective 
mass, m7 and m; , respectively . Therefore, in the conduction band of silicon, accounting for 
the six equivalent conduction band valleys, we find that an appropriate density of states is 

(8.22) 

where 

(8.23) 

8.2 CLASSICAL AND QUANTUM STATISTICS 

In earlier chapters, we have found solutions to Schrodinger's equation for free electrons, 
and for electrons confined to certain regions of space. These solutions represented possible 

tNote that the density of states is higher for larger effective mass values. Thus, the heavy holes tend to 
denominate the properties of the valence band, although both heavy and light holes are important. 
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states of the corresponding quantum system. In the previous section, we obtained the 
of states, which describes the number of these states in the vicinity of a certain energy. 
remains to be found is the number of occupied states, i.e., which states, and how many 
are actually filled. t For this we need to know the probability of a state being occupied 
energy E. This probability is given by the distribution f (E), and next we consider 
common distributions. 

1. Classical or Boltzmann Distribution 
This distribution applies when particles are distinguishable from each other 
as classical particles), with no other constraints on their behavior. The tlO!ltZm3lnn 
distribution arises from classical statistical mechanics, and is given by 

E-fL 
fS (E) = fS (E, ~, T) = e - ksT . 

The quantity ~ is the chemical potential, usually simply replaced by the Fermi 
EF, and ks is Boltzmann's constant (ks = 1.38 x 10-23 J/K). 

2. Fermi-Dirac Distribution 
The Fermi-Dirac distribution applies when the particles in question are 1rtfi1C'j-. ri 

guishable, and when only one particle can occupy a particular state (e.g., elE~ctl·onISJ . 

Therefore, the Fermi-Dirac distribution applies to quantum particles that obey 
exclusion principle, and is given by 

f (E) = f (E,~, T) = ---E-fL 
e ksT + 1 

where again we usually make the replacement,tJ< = E F. When E - E F » k S T 
as the Boltzmann approximation; ks T :::::::: 0.025 eV at room temperature), the first term 
the denominator is large compared to the second term, and the Fermi-Dirac dlstntmtloh 
becomes the classical Boltzmann distribution (8.24). In the limit T = 0, the H .... rTrlL_. 

distribution becomes a step function, 

f(E,EF,T=Ol={ ~: 

as shown in Fig. 8.5. Thus, at T = 0 K, all states below E F are completely 
and all states above E F are empty. Although the step function is not well defined 
E = EF, since for all T > 0 the Fermi-Dirac distribution crosses through the 
f (E) = 1/2 when E = EF, then f (E = EF, EF, 0) can be defined to be 1/2. 
Fermi-Dirac distribution for T » 0 is also shown in Fig. 8.5, where it can be 
that only states within a few ks T of the Fermi energy are likely to be excited. 
many materials (especially metals) at even quite high temperatures, k s T is very 

t As previously remarked, by a "filled state" we mean that an electron is in that state, i.e., that an electron 
represented by the corresponding state function. For a one-electron system, one state would be filled; the 
is in a certain state. For N electrons, N· states would be filled. 
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Figure 8.5 Fermi-Dirac distribution for EF = 1 eV at T = 0,300, and 1,000 K. 

compared to the Fermi energy, and, thus, electrons at the Fermi energy are of principal 
importance. In fact, to use the Fermi sea notion described in Section 4.4, since ks T 

is often small compared to E F, the excited states above E F are said to be merely 
"ripples on the Fermi sea." 

3. Bose-Einstein Distribution 
The Bose-Einstein distribution applies when the particles are indistinguishable, but 
can occupy the same available states. That is, it applies to quantum particles that do not 
obey the exclusion principle-for example, photons and phonons. The Bose-Einstein 
distribution is 

fSE (E) = fSE (E,~, T) = --­
E-fL 

e ksT - 1 
(8.27) 

We can see that at large values of energy, all three distributions are equal. This is 
because of the de Broglie wavelength (2. 15)-as energy increases, the de Broglie wavelength 
decreases, and for very high energies, the de Broglie wavelength is vanishingly small, such 
that the particle becomes like a classical particle. Since we are interested in electrons, we 
will be concerned primarily with the Fermi-Dirac distribution. 

Using the Fermi-Dirac distribution, we find that since the probability of a level being 
occupied by an electron is f (E), then the probability of a level not being occupied by an 
electron (i.e., being occupied by a hole), is 

1 - f (E) = -Ep---E-­

e ksT + 1 
(8.28) 
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sincet 

E-EE +---- = 1. EE-E 
e kBT + 1 e kBT + 1 

8.2.1 Carrier Concentration in Materials 

With the concept of the density of states and of the Fermi-Dirac distribution, we can 
find the total number of filled electronic states per unit volume, and also obtain a 
formula for the Fermi level. In general, we can determine the electron COltlCcmtlratlloIl 
(m-3) by multiplying the electronic density of states, N (E), and the probability that a 
is occupied, f (E), and integrating over energy, 

n= f N(E)f(E,EF , T)dE. 

The limits of integration would depend~()n the specific circumstances, such as the 
range of interest, etc. The number of fiUed\ states per unit volume at T = 0 is 

Nf= { YO N(E)f(E,EF,T=O)dE 

= foEF N (E) dE. 

For the electron confined to a three-dimensional space, using (8.6) we have:!: 

_ .. ·me dE _ me _E3/ 2 

fo

EE 21 /2 *3/2 E1/2 21 /2 *3/2 2 
Nj - 0 li3n2 - tI}n2 3 F ' 

which must equal the total number of electrons per unit volume, N. Then, if we know 
total number of electrons in a system, we can find the Fermi level as 

EF = 3N Ii Jt 3/2 
( 

3 2 ) 2/3 

(2m;)-

E-EF EF-E 

tTo see this, let u = e kBT , such that l/u = e kBT . Then, 

1 u 
=--+--=1. 

u+l l+ u 

tlntegrating over the specified limits and using (8.6) implies that this calculation is valid for an 
gas model. This is applicable to most metals, and serves as an approximation for semiconductors that are d 
at a sufficiently high level (so that we can consider the material to be a particle gas of the dopant carriers). 
analogous calculation for semiconductors not in the highly doped limit is given in the next section. 
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(8.36) 

In a typical metal, EF is in the range of a few eV. For example, assuming one electron 
per 0.1 nm

3 
(1022 electrons/cm3), which is a typical order of magnitude for many materials, 

we have 

EF = l.67 eV. (8.37) 

In two dimensions, using (8.14) we have 

l
EE lEF m* m* 

N=N j = N(E)dE= _edE=_eEF , 
o 0 n li2 n li2 (8.38) 

leading to 

E(2d) = nli
2 

N. 
F m* 

e 
(8.39) 

In one dimension, 

E(ld) = (~) (nN)2 
F 2m* 2 e 

(8.40) 

Later we will need a few other useful quantities related to the Fermi level. The Fermi 
wavevector is the wavevector at the Fermi energy. If the energy-wavevector relationship 
is t 

then the Fermi wavevector is 

(2m;EF )1 /2 
k F = -'----.:...-..:--

li 

= (3Nn2)1 /3 

= (2nN)1 /2 

nN 

2 

in three dimensions, 

in two dimensions, 

in one dimension. 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

(8.45) 

Of course, N is the appropriate number density (m- 3, m-2, m- l in three dimensions, two 
dimensions, and one dimension, respectively). The relationship between Fermi energy and 
Fermi wavevector is depicted in Fig. 8.6. 

tThis quadratic dependence between E and k occurs for free electrons (Section 4.1), spatially confined 
electrons in otherwise empty space (Section 4.3), and for electrons in crystalline materials near energy bandedges 
(Section 5.4.4). Recall that for semiconductors, the bandedges are the most important sections of the energy band. 
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Figure 8.6 Energy versus wavevector showing the Fenni level and Fenni wavevector. 
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Figure 8.7 Energy versus wavenumber for discrete energy levels. Filled circles denote filled 
and empty circles denote empty states. Only values of energy and wavenumber represented by 
are allowed. 

We are usually interested in confined regions of space, leading to discrete states, 
as considered in Section 4.3. In this case, the wavenumber k will be discrete along 
(perhaps multiple) coordinate(s), and the energy-wavevector diagram will look like 
In this figure, note that the Fermi level is shown halfway between the highest filled 
and the next higher empty state. This may occur, or it may lie at the level of the 
filled state, depending on the number of electrons, per the definition of chemical DotentiilJ 
given in Section 4.4. This is discussed in Section 8.2.3, where the Fermi level is '-'VJL1~,"U'-" I """ 

to be the energy state that has a probability of ! of being occupied by an ""1.0,,,"'-,,'" 

T =0 K. 
If we consider confinement in two dimensions, say, along the x- and 

then we can view the occupation of states as being those states within the Fermi circle, 

00 
00 
00 
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Figure 8.8 Electronic states in the kx-ky plane. The states within the Fenni circle shown are occu­
pied. 

shown in Fig. 8.8. For confinement in three dimensions, we obtain a Fermi sphere, rather 
than a Fermi circle. 

The Fermi wavelength is 

(8.46) 

and the Fermi velocity is, from the momentum-wavevector relationship (2.15) (m*v = p = 
nk), e 

nkF 
VF=-· m; (8.47) 

Note that the relationship between the Fermi wavelength, Fermi wavenumber, and 
Fermi velocity are completely general, unlike the parabolic relationship between Fermi 
energy and Fermi wavenumber (8.41). 

Table 8.1 shows the Fermi energy, velocity, and wavelength for a few common ele­
ments in three dimensions. More values are provided in Table II in Appendix B. 

TABLE 8.1 FERMI ENERGY, FERMI VELOCITY, AND FERMI 
WAVELENGTH FOR SEVERAL COMMON ELEMENTS. 

Element EF (eV) VF (x lO6 mls) "'A.F (nm) 

Li 4.74 1.29 0.56 
Na 3.24 1.07 0.68 
K 2.12 0.86 0.85 
eu 7.00 1.57 0.46 
Ag 5.49 1.39 0.52 
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8.2.2 The Importance of the Fermi Electrons 

Before leaving this section, it is worthwhile to examine some ideas related to the 
level. For example, it is a fact that many electrons contribute to conduction in metals, and y 
we have said previously that only electrons having energy near the Fermi level contribute 
conduction (i.e., thatele£trons near the Fermi/level are the "important" electrons). 
there is no contradiction; there are many electrons that have energy near to the 
level, and these are the many electrons th.at c;ontribute to conduction. Considering 
for example, we find that using Ep =7.0 eV, (8.~4)leads to the density of electrons 
N (E p) = 1.8 x 1022 cm - 3 . l11Us, there are alarge nUIIlber of states around the Fermi lev L 

In addition, at room temperatur~(around29? K), kBT = 0.025 eV. This energy j. 
very small compared with the Fermi level in mosty.metals, as shown in Table 8.1. That i , 
since Boltzmann's constant is so small, the· thermal energy gained by electrons, even ....... t 
quite high temperatures, is small compared to the Fermi energy. Therefore, in conductor 
electrons in the absence of an applied field can often be considered to have energy E p (i. . 
thermal energy can often be ignored). For example, consider again copper, where E p :::::;;7 
eV. Let's assume that in order for thermal effects to be important, we need kBT = 3.5 e , 
which is one-half the Fermi energy. The corresponding temperature is T "" 40,600 K, and 
even at this temperature k B T is only one-half of the Fermi level! Therefore, filled stat 
deep within the Fermi sphere will not play much role in electronic interactions, and we 
most interested in electrons and states near the Fermi surface. 

However, in semiconductors, thermal energy can liberate a large number of electroll , 
especially from donors or acceptors (creating free electrons and holes), changing significaIttl 
the material's electronic properties. In this case, electron energies are typically aboveith 
Fermi level, as described in Section 5.4. 

Aside from thermal effects, it turns out that even in the event of other energy inputs~jn 
metals the electron's energy is still approximately the Fermi energy. For example, consider 
what happens to the electron's energy if we apply an electric field. The resulting 
velocity (the velocity of the net current) is very low, typically on the order of mmls 
Section 10.l), which is many orders of magnitude smaller than the Fermi velocity. 
assuming that we apply a large field of 100 Vim to copper, and that the field accelerati~S 
electron over the mean free path of 40 nm, the energy gained from the field is 

E = Fd = e (100) (40 x 10-9
) = 6.4 x 10-25 J 

= 4 X 10-6 eV, 

which is miniscule compared to the Fermi energy. So again, electrons in metals act 
imately as if they have energy Ep. This is true even at very high temperatures, 
the melting temperature of a metal. 

8.2.3 Equilibrium Carrier Concentration and the Fermi Level 
in Semiconductors 

In semiconductors, in particular, we are often interested in determining the carrier n­
tration available for electrical conduction. We can determine the carrier cOlnCt~ntlratlLpn in 

Section 8.2 Classical and Quantum Statistics 275 

the conduction band by multiplying the electron density of states in the conduction band, 
Ne (E), and the probability that a state is occupied, f (E, E p, T), and summing over all 
energies in the band, 

where f (E, E p , T) is the Fermi-Dirac function. This leads to 

= _1 (2m:)3/2 roo ( (E - Ee)1/2 ) 
2n2 li2 Jf, (E-EE) dE. 

Ee e kBT + 1 

If (E - E p) I (kB T) » 1 (i.e., the Boltzmann approximation), then 

With 

1 (2m*)3/2 k /,00 ~ n = - __ e ekBT (E - E )1/2e-kBTdE 
2n2 iiI. e· 

Ee 

l~ (E - E,.) 1/2 e ~ k;T) dE = e ~f.T l~ (E - E,)1/2 e ~ ~~f.' dE 

= e ~f.T (ks T)1/2 (ksT) 1,00 ul/2e~udu 
~ 1 

= e - kBT (kB T)3/2 2y1t, 

using the change of variables u = (E - Ee) I (kBT), du = dEl (kBT), and 

then 

(
m*kBT)3/2 EE-Ee (Ee-EE) 

n = 2 _e__ e kBT = N e - kBT 
2nli2 e· 

(8.49) 

(8.50) 

(8.51) 

(8.52) 

(8.53) 

(8.54) 

Ne is known as the effective density of states at the conduction bandedge. For example, for 
silicon, Ne :::::: 2.8 x 1019 cm-3 at room temperature. 

Taking the natural logarithm of the previous equation, we have an expression for the 
Fermi level, 

n 
E p = Ee + kB Tin -. 

Ne 
(8.55) 
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A similar calculation for the holes leads to 

(

m* kB T )3/2 E,,-EF (EF - Ev) 
P = 2 _h__ e kBT = N ve kB T 

2nh} 

where N v is called the effective density of states at the valence bandedge. 

In summary, we have 

(Ec-EF) 

n=Nce ~ 
(EF-Ev) 

p=Nve ~ 

Note that we haven ' t indicated whether (8.57) and (8.58) refer to intrinsic or extrin i 
semiconductors. In fact, they typically apply to both in thermal equilibrium (assUI~r 
the Boltzmann approximation is valid), where the presence or absence of dopant atom 
is reflected in the position of the Fermi level. For intrinsic semiconductors, the n 

ni = Pi leads to 

2 _ e_ B_ e k8 T = 2 _h__ e kBT 
(

m*k T)3/2 EF-Ec (m*kBT)3 /2 E,,-EE 

2nn2 2nn2 

_E_c_+_E_v + 3kBT In m'h. 
==> EFi = 24m; 

Therefore, the intrinsic Fermi level is near the middle of the bandgap. (If the 

(8 .. 

tive electron and hole masses are equal, the intrinsic Fermi level is precisely in th 
middle of the bandgap.)t The top of the valence band is usually set to E = 0, and in 
this case, EFi = Eg /2. Furthermore, for intrinsic semiconductors, obviously ni P; = nT, 

that 

~ 
ni = jNcNve -2kBT. (8. 

From (8.60) we see that carrier concentration increases exponentially as bandgap decreas' 
For silicon at room temperature, ni == l.5 x 10lD cm-3

. 

For extrinsic n-type semiconductors, if we assume that the dopant concentration 
much higher that the intrinsic carrier concentration ni (typical doping levels in conventio,~al 
devices are on the order of 1015 atoms/cm3 or more), and that all dopant atoms are ioni3~ 
(the usual situation), then for an n-type material , 

(8. 

t It is convenient to view the Fermi level as the energy state that has a probability of ! of being 
by an electron. Since at T = 0 K all states below Ev are filled, and all states above Ec are empty, then the equal 
probability point lies in the middle of the bandgap, . even though no allowed states are located in the gap. 
consistent with the definition of the chemical potential in Section 4.4. 
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Substituting this into (8.57), we have 

EF = E, ~ kBTln (~J (8.62) 

Of course, with this Fermi level, (8.57) yields n = Nd. 
Note that if the doping level is very high such that Nd == N c , then EF approaches 

Ec and the semiconductor is said to be degenerate. However, in this case, the Boltzmann 
approximation breaks down, and a more careful analysis must be used. 

In a similar manner, for a p-type semiconductor with an acceptor doping density 

EF = E, +kBTln G:), 
which approaches the value EF = Ev for Na == Nv (e.g. , N v == 1019 cm3 for silicon at room 
temperature) . 

Since the product 

(8.63) 

is independent of the Fermi level, it should hold for doped (extrinsic) semiconductors as 
well; (8.63) is known as the mass-action law. It holds in the extrinsic case since an increase 
in one carrier type (electrons or holes) tends to diminish, through recombination, the other 
carrier type. 

8.3 MAIN POINTS 

In this chapter, we have considered the idea of particle statistics and the density of states, 
and implications to the Fermi level and carrier concentrations. In particular, after studying 
this chapter you should understand 

• the concept of density of states in various spatial dimensions, and the significance of 
the density of states; 

• how the density of states can be measured; 

• quantum and classical statistics for collections of large numbers of particles, including 
the Boltzmann, Fermi-Dirac, and Bose-Einstein distributions; 

• the role of density of states and quantum statistics in determining the Fermi level; 

• applications of density of states and quantum statistics to determine carrier concen­
tration in materials, including in doped semiconductors. 

8.4 PROBLEMS 

1. Energy levels for a particle in a three-dimensional cubic space of side L with hard 
walls (boundary conditions (4.50)) were found to be (4.54) 

f/} n
2 (2 2 2) 

En =---2 nx+ny +nz' 
2m;L 

(8.64) 
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nx,y,Z = 1,2,3, ... , which leads to the density of states (8.6). Using periodic 
ary conditions (4.55), we found energy levels to be (4.59) 

2ti
2

rr2 (2 2 2) 
En = --2 nx +ny +nz ' 

m;L 

nx,y,z = 0, ±1, ±2, .... Following a derivation similar to the one shown for 
show that the same density of states arises from (8.65). 

2. Derive (8.16), the density of states in two dimensions. 

3. The density of states in a one-dimensional system is given by (8.15), 

J2m* 
N (E) = rrti e E- I

/
2

, 

assuming zero potential energy. 

(a) Use this formula to show that the Fermi energy in terms of the total nl1Tnh..~r 
filled states at T = 0 K, N f' is (8.40), 

_ ti2 (rrNf)2 
EF-- --

2m; 2 

(b) If there are N electrons in a one-dimensional box of length L, show that 
energy level of the highest energy electron is EF, given by (8.67). Use the 
that the energy levels in a one-dimensional box are (4.35), 

ti
2 

(nrr)2 
En = 2m* L ' n = 1, 2, 3, ... 

e 

4. Assume that the density of states in a one-dimensional system is given by 

~ N (E) = __ E- I / 3 

rrti 

at zero potential energy. 

(a) Use this formula to obtain the Fermi energy. 
(b) What is the relationship between the de Broglie wavelength and the Fermi 

length? 

(8. 

f 

5. The electron carrier concentration in the conduction band can be ti~1r~"'Yl1r,~ri 

multiplying the electron density of states in the conduction band, Ne (E), 

probability that a state is occupied, f (E, E F, T), and then summing over all ene~r~lles 
to yield (8.54) on page 275. Perform the analogous calculations for ~""L""~~"~HU~E:> 
hole carrier concentration in the valence band, leading to (8.56). 

6. The Fermi wavelength in three-dimensional copper is AF = 0.46 nm. L/""L""U'~~HH .. ' 
Fermi wavelength in two-dimensional copper. 

7. Determine the Fermi wavelength of electrons in three-dimensional aluminum 
zinc. 

8. What is the electron concentration in an n-type semiconductor at room tenl1pe~rature 
if the material is doped with 1014 cm-3 donor atoms? How would one de1tenl1Jrle 
the hole concentration? 
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9. The concept of the Fermi energy can be used to give some confidence of electron­
electron screening in conductors (i.e., the ability to ignore interactions among elec­
trons), previously described in Sections 3.5 and 4.2. To see this, approximate the 
electron's kinetic energy by the Fermi energy. Then, for an electron density N m-3, 
assuming that the average distance between electrons is N- I /3, show that the ratio 
of Coulomb potential energy to kinetic energy goes to zero as N goes to infinity, 
showing that the electrons essentially screen themselves. 

10. Constructive and destructive interference of electromagnetic waves (light, radio­
frequency signals, etc.) is one of the most commonly exploited phenomena in 
classical high-frequency devices. For example, resonance effects result from wave 
interference, and are used to form filters, impedance transformers, absorbers, anten­
nas, etc. In contrast to these electromagnetic (i.e., photon) devices, which obey 
Bose-Einstein statistics, electron waves are fermions, and obey Fermi-Dirac statis­
tics and the exclusion principle. Describe how it is possible for a large collection 
of bosons to form a sharp interference pattern, yet this will not be observed by a 
large collection of electrons in a solid. Does this make sense considering Fig. 2.6 on 
page 29, where sharp electron interference was, in fact, observed? 


