ADDITIONAL ANALYSIS TECHNIQUES

LEARNING GOALS

REVIEW LINEARITY

The property has two equivalent definitions.
We show and application of homogeneity

APPLY SUPERPOSITION

We discuss some implications of the superposition property in linear circuits

DEVELOP THEVENIN'S AND NORTON'S THEOREMS

These are two very powerful analysis tools that allow us to focus on parts of a circuit and hide away unnecessary complexities

MAXIMUM POWER TRANSFER

This is a very useful application of Thevenin's and Norton's theorems

THE METHODS OF NODE AND LOOP ANALYSIS PROVIDE POWERFUL TOOLS TO DETERMINE THE BEHAVIOR OF EVERY COMPONENT IN A CIRCUIT

The techniques developed in chapter 2; i.e., combination series/parallel, voltage divider and current divider are special techniques that are more efficient than the general methods, but have a limited applicability. It is to our advantage to keep them in our repertoire and use them when they are more efficient.

In this section we develop additional techniques that simplify the analysis of some circuits.
In fact these techniques expand on concepts that we have already introduced: linearity and circuit equivalence

LINEARITY

THE MODELS USED ARE ALL LINEAR. MATHEMATICALLY THIS IMPLIES THAT THEY SATISFY THE PRINCIPLE OF SUPERPOSITION

THE MODEL $\boldsymbol{y}=\boldsymbol{T} \boldsymbol{u}$ IS LINEAR IFF
$\boldsymbol{T}\left(\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}\right)=\alpha_{1} \boldsymbol{T} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{T} \boldsymbol{u}_{2}$ for all possible input pairs $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ and all possible scalars α_{1}, α_{2}

> AN ALTERNATIVE, AND EQUIVALENT, DEFINITION OF LINEARITY SPLITS THE SUPERPOSITION PRINCIPLE IN TWO.

THE MODEL $\boldsymbol{y}=\boldsymbol{T} \boldsymbol{u}$ IS LINEAR IFF

1. $\boldsymbol{T}\left(\boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)=\boldsymbol{T} u_{1}+\boldsymbol{T} \boldsymbol{u}_{2}, \forall \boldsymbol{u}_{1}, \boldsymbol{u}_{2} \quad$ additivity
2. $\boldsymbol{T}(\alpha \boldsymbol{u})=\alpha \boldsymbol{T} \boldsymbol{u}, \forall \alpha, \forall \boldsymbol{u}$ homogeneity

NOTICE THAT, TECHNICALLY, LINEARITY CAN NEVER BE VERIFIED EMPIRICALLY ON A SYSTEM. BUT IT COULD BE DISPROVED BY A SINGLE COUNTER EXAMPLE.
IT CAN BE VERIFIED MATHEMATICALLY FOR THE MODELS USED.

USING NODE ANALYSIS FOR RESISTIVE CIRCUITS ONE OBTAINS MODELS OF THE FORM $\boldsymbol{A} v=f$
v IS A VECTOR CONTAINING ALL THE NODE VOLTAGES AND f IS A VECTOR DEPENDING ONLY ON THE INDEPENDENT SOURCES. IN FACT THE MODEL CAN BE MADE MORE DETAILED AS FOLLOWS

$$
A v=B s
$$

HERE, A, B, ARE MATRICES AND s IS A VECTOR OF ALL INDEPENDENT SOURCES

FOR CIRCUIT ANALYSIS WE CAN USE THE LINEARITY ASSUMPTION TO DEVELOP SPECIAL ANALYSIS TECHNIQUES

FIRST WE REVIEW THE TECHNIQUES CURRENTLY AVAILABLE

A CASE STUDY TO REVIEW PAST TECHNIQUES

SOLUTION TECHNIQUES AVAILABLE??

Redrawing the circuit may help us in recognizing special cases

USING HOMOGENEITY

Assume that the answer is known. Can we Compute the input in a very easy way ?!! If Vo is given then V1 can be computed using an inverse voltage divider.

$$
V_{1}=\frac{R_{1}+R_{2}}{R_{2}} V_{0}
$$

And Vs using a second voltage divider

$$
V_{S}=\frac{R_{4}+R_{E Q}}{R_{E Q}} V_{1}=\frac{R_{4}+R_{E Q}}{R_{E Q}} \frac{R_{1}+R_{2}}{R_{2}} V_{0}
$$

The procedure can be made entirely algorithmic

1. Give to Vo any arbitrary value (e.g., V'o =1)
2. Compute the resulting source value and call it $\mathbf{V}^{\prime} _s$
3. Use linearity. $V_{S}^{\prime} \rightarrow V_{0}^{\prime} \Rightarrow k V_{S}^{\prime} \rightarrow k V_{0}^{\prime}, \forall k$
4. The given value of the source (\mathbf{V} _s) corresponds to

$$
k=\frac{V_{S}}{V_{S}^{\prime}}
$$

Hence the desired output value is

$$
V_{0}=k V_{0}^{\prime}=\frac{V_{S}}{V_{S}^{\prime}} V_{0}^{\prime}
$$

This is a nice little tool for special problems. Normally when there is only one source and when in our judgement solving the problem backwards is actually easier

Solve now for the variable Vo

SOLVE USING HOMOGENEITY

LEARNING EXTENSION

COMPUTE $\boldsymbol{I}_{\boldsymbol{o}}$ USING HOMOGENEITY. USE $\boldsymbol{I}=6 \boldsymbol{m} \boldsymbol{A}$

Source Superposition

This technique is a direct application of linearity.

It is normally useful when the circuit has only a few sources.

FOR CLARITY WE SHOW A CIRCUIT WITH ONLY TWO SOURCES

Due to Linearity

$V^{1}{ }_{L}$ Can be computed by setting the current source to zero and solving the circuit
$V^{2}{ }_{L}$ Can be computed by setting the voltage source to zero and solving the circuit

Circuit with voltage source set to zero (SHORT CIRCUITED)

Due to the linearity of the models we must have

$$
I_{L}=I_{L}^{1}+I_{L}^{2} \quad V_{L}=V_{L}^{1}+V_{L}^{2} \quad \text { Principle of Source Superposition }
$$

The approach will be useful if solving the two circuits is simpler, or more convenient, than solving a circuit with two sources

We can have any combination of sources. And we can partition any way we find convenient

LEARNING EXAMPLE
WE WISH TO COMPUTE THE CURRENT i_{1}
Once we know the "partial circuits" we need to be able to solve them in

$$
\begin{aligned}
i_{1}^{\prime \prime}(t) & =\frac{-2 v_{2}(t)}{15 \mathrm{k}}\left(\frac{3 \mathrm{k}}{3 \mathrm{k}+3 \mathrm{k}}\right) \\
& =\frac{-v_{2}(t)}{15 \mathrm{k}} \\
& \text { Contribution of } \mathrm{v} 2
\end{aligned}
$$ an efficient manner

LEARNING EXAMPLE Compute \boldsymbol{V}_{0} using source superposition

We set to zero the voltage source

Now we set to zero the current source

Set to zero current source

Set to zero voltage source

WHEN IN DOUBT... REDRAW!

We must be able to solve each circuit in a very efficient manner!!!

If V1 is known then V'o is obtained using a voltage divider V1 can be obtained by series parallel reduction and divider

$$
\begin{aligned}
& + \\
& \mathrm{v}_{1} \\
& -\underset{2 \mathrm{M}}{+} \sum_{2 \mathrm{k}}^{6 \mathrm{k}} \mathrm{v}_{0}^{\prime} \\
& + \\
& \boldsymbol{V}_{\boldsymbol{O}}^{\prime}=\frac{6 \boldsymbol{k}}{6 \boldsymbol{k}+2 \boldsymbol{k}} V_{1}=\frac{18}{7}[\boldsymbol{V}]
\end{aligned}
$$

The current $\mathbf{I} 2$ can be obtained using a current divider and V"o using Ohm's law

$$
\begin{aligned}
& \boldsymbol{I}_{2}=\frac{2 \boldsymbol{k}+(2 \boldsymbol{k} \| 4 \boldsymbol{k})}{2 \boldsymbol{k}+6 \boldsymbol{k}+(2 \boldsymbol{k} \| 4 \boldsymbol{k})}(2) \boldsymbol{m} \boldsymbol{A} \\
& \boldsymbol{V}_{\boldsymbol{O}}^{\prime \prime}=6 \boldsymbol{k} \boldsymbol{I}_{2} \\
& \boldsymbol{V}_{\boldsymbol{O}}=\boldsymbol{V}_{\boldsymbol{O}}^{\prime}+\boldsymbol{V}_{\boldsymbol{O}}^{\prime \prime}
\end{aligned}
$$

Sample Problem COMPUTE I_{0} USING SOURCE SUPERPOSITION

1. Consider only the voltage source

$$
I_{01}=-1.5 \mathrm{~mA}
$$

3. Consider only the 4 mA source

$$
I_{03}=0
$$

Current divider

$$
I_{02}=-1.5 m A
$$

Using source superposition

$$
I_{0}=I_{01}+I_{02}+I_{03}=-3 m A
$$

USE SOURCE SUPERPOSITION TO COMPUTE I

short circuit voltage source

in case of doubt: REDRAW CIRCUIT!

$$
\begin{aligned}
& \text { NOW USE CURRENT DIVIDER } \\
& I_{o}^{2}=-\frac{2 R}{2 R+R+\|3 R, 6 R\|} I_{S} \\
& I^{2}{ }_{o}=-\frac{2}{5} I_{S}
\end{aligned}
$$

$$
\begin{aligned}
& I_{O}=I_{O}^{1}+I^{2} o \\
& I_{O}=-\frac{V_{S}}{15 R}-\frac{2}{5} I_{S}
\end{aligned}
$$

Linearity

