







## Problem-Solving Approach

- Make a clear problem statement.
- List known information and given data.
- Define the unknowns required to solve the problem.
- List assumptions.
- Develop an **approach** to the solution.
- Perform the analysis based on the approach.
- Check the results and the assumptions.
  - Has the problem been solved? Have all the unknowns been found?
  - Is the math correct? Have the assumptions been satisfied?
- Evaluate the solution.
  - Do the results satisfy reasonableness constraints?
  - Are the values realizable?
- Use computer-aided analysis to verify hand analysis

| Microelectronic Circuit Design | Chap 1 - 5                                    |
|--------------------------------|-----------------------------------------------|
| McGraw-Hill                    |                                               |
|                                | Microelectronic Circuit Design<br>McGraw-Hill |

























































Worst-case source currents:

$$I_{S}^{\max} = \frac{V_{S}^{\max}}{R_{1}^{\min} + R_{2}^{\min}} = \frac{15V(1.1)}{18k\Omega(0.95) + 36k\Omega(0.95)} = 322\,\mu A$$

$$I_{S}^{\min} = \frac{V_{S}^{\min}}{R_{1}^{\max} + R_{2}^{\max}} = \frac{15V(0.9)}{18k\Omega(1.05) + 36k\Omega(1.05)} = 238\mu A$$

**Check of Results:** The worst-case values range from 14-17 percent above and below the nominal values. The sum of the three element tolerances is 20 percent, so our calculated values appear to be reasonable.

Jaeger/Blalock 4/15/07 Microelectronic Circuit Design McGraw-Hill Chap 1 - 33











|                           | End of Lecture 1                              |             |
|---------------------------|-----------------------------------------------|-------------|
|                           |                                               |             |
| Jaeger/Blalock<br>4/15/07 | Microelectronic Circuit Design<br>McGraw-Hill | Chap 1 - 39 |