

Example 2.2: Calculate the resistivity of intrinsic silicon

Problem: Find the resistivity of intrinsic silicon at room temperature and classify it as an insulator, semiconductor, or conductor.

Solution:

- **Known Information and Given Data:** The room temperature mobilities for intrinsic silicon were given right after Eq. 2.5. For intrinsic silicon, the electron and hole densities are both equal to n_i.
- Unknowns: Resistivity ρ and classification.
- Approach: Use Eqs. 2.8 and 2.9. $[\sigma = q(n \mu_n + p \mu_p) \quad (\Omega \cdot \text{cm})^{-1}]$
- Assumptions: Temperature is unspecified; assume "room temperature" with n_i = 10¹⁰/cm³.
- Analysis: Next slide...

```
Jaeger/Blalock
4/15/07
```

Microelectronic Circuit Design McGraw-Hill Chap 2 - 15

p-type Material

• Similar to the approach used with n-type material we find the following equations:

$$p = \frac{(N_A - N_D) \pm \sqrt{(N_A - N_D)^2 + 4n_i^2}}{2}$$
 and $n = \frac{n_i^2}{p}$

- We find the majority carrier concentration from charge neutrality (Eq. 2.10) and find the minority carrier conc. from the thermal equilibrium relationship (Eq. 2.3).
- For $(N_A N_D) \gg 2n_i$, $p \cong (N_A N_D) \approx N_A$ if $N_D = 0$.

Jaeger/Blalock	Microelectronic Circuit Design	Chap 2 - 23
4/15/07	McGraw-Hill	

	End of Lecture 2	
Jaeger/Blalock 4/15/07	Microelectronic Circuit Design McGraw-Hill	Chap 2 - 25