ELE 2110A Electronic Circuits

Week 10: MOS Logic Circuits

(45 minutes only)

Lecture 10 - 1

- CMOS Inverter
 - Static characteristics
 - Dynamic characteristics
 - Power dissipation
- Other CMOS logic gates

Reading Assignment: Chap 6.1-6.3, 7.1-7.4 of Jaeger and Blalock or

Chap 7.1 - 7.3, 7.7 of Sedra and Smith

Digital IC Technologies and Logic-Circuit Family

This course

Ideal Inverter

CMOS Inverter

PU: pull up network, responsible for producing HIGH output PD: pull down network, responsible for producing LOW output

- CMOS Inverter
 - Static characteristics
 - Dynamic characteristics
 - Power dissipation
- Other CMOS logic gates

Dynamic Characteristic: Rise and Fall times

The rise and fall times, t_f and t_r, are measured at the 10% and 90% points on the transitions between the two states.

$$\mathbf{V}_{10\%} = \mathbf{V}_{\mathrm{L}} + \mathbf{0.1}\Delta\mathbf{V}$$

$$V_{90\%} = V_{\rm L} + 0.9\Delta V$$
$$= V_{\rm H} - 0.1\Delta V$$

Dynamic Characteristic: Propagation Delay

- Propagation delay: the time between a change at the 50% point input to cause a change at the 50% point of the output
- The high-to-low prop delay, τ_{PHL}, and the low-to-high prop delay, τ_{PLH}, are usually not equal, but can be described as an average value:

$$\tau_{\rm P} = \frac{\tau_{\rm PHL} + \tau_{\rm PLH}}{2}$$

Propagation Delay

- C represents parasitic capacitances:
 - MOS gate capacitance of next logic gate
 - Wire capacitance to ground
- Output parasitic capacitor voltage cannot change instantaneously
- Capacitive charging/discharging contributes to propagation delay

Propagation Delay Estimate

• It can be shown (see section 7.3.1 and 6.14.12)

$$\tau_{PHL} \propto R_{onN} C$$

where $R_{onN} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_H - V_{TN})}$

- For matched nmos and pmos ($\mu_n C_{ox} \left(\frac{W}{L}\right)_n = \mu_p C_{ox} \left(\frac{W}{L}\right)_p$), $\tau_{\text{PLH}} = \tau_{\text{PHL}}$
- The delay depends on C
 - In smaller feature size CMOS process, wires and transistors are smaller
 - Parasitic C is smaller
 - − Delay is smaller \rightarrow Circuits run faster
- The delay also depends on R_{ON}

Example

Given that:

For C=1pF,

$$\tau_p = 6.4ns$$
 $\tau_p = ?$
 $\tau_p = ?$

Lecture 10 - 13

- If odd number of inverters (at least 3) are connected as a ring, it oscillates.
- Oscillation frequency relates to the propagation delay of the inverters
- Waveform at 6 = waveform at 1 \rightarrow 5 Delays = T/2 \rightarrow Delay = T/10

- CMOS Inverter
 - Static characteristics
 - Dynamic characteristics
 - Power dissipation
- Other CMOS logic gates

Power Dissipation

- CMOS logic has no static power dissipation
 - The is no DC path between VDD and GND at any time

• But, when the inverter changes its output...

Dynamic Power Dissipation

• When the inverter charges or discharges the output capacitor, it consumes power.

Charging

Discharging

Dynamic Power Dissipation

• The energy delivered from the VDD is:

$$E_{D} = V_{DD} \int_{0}^{\infty} i(t) dt = V_{DD} \int_{0}^{\infty} \frac{dq(t)}{dt} dt = CV_{DD} \int_{V_{C}(0)}^{V_{C}(\infty)} 1 dv_{C} = CV_{DD}^{2}$$

• The energy stored by the capacitor is:

$$E_D = \frac{CV_{DD}^2}{2}$$

• The difference between the above two terms represents the energy lost in the resistive elements:

 R_1

Dynamic Power Dissipation

• The total energy lost in the first charging and discharging of the capacitor through resistive elements is given by:

$$E_{TD} = \frac{CV_{DD}^2}{2} + \frac{CV_{DD}^2}{2} = CV_{DD}^2$$

• For every clock cycle, the dynamic power dissipation is:

$$P_D = \text{Energy/Time} = CV_{DD}^2 f$$

- This result can be extended to a complex digital IC, where C represents the area of the IC
- Lower V_{DD} is very effective for reducing power supply
- Reducing C also helps reducing power

- CMOS Inverter
 - Static characteristics
 - Dynamic characteristics
 - Power dissipation

• Other CMOS logic gates

CMOS NOR Gate

CMOS NOR Gate Truth Table and Transistor States									
A	В	$Y = \overline{A + B}$	NMOS-A	NMOS-B	PMOS-A	PMOS-B			
0	0	1	Off	Off	On	On			
0	1	0	Off	On	On	Off			
1	0	0	On	Off	Off	On			
1	1	0	On	On	Off	Off			

Lecture 10 - 21

Gate Sizing

- Want to keep the delay times the same as a reference inverter under the worst case input conditions.
- Consider a two-input NOR gate:
 - (W/L)_n should be same as that of the inverter
 - (W/L)_p should be twice as large as that of the inverter

CMOS NAND Gate

Pull-up Network: $Y = \overline{A} + \overline{B}$

Pull-down Network:

<u>ar an a</u>		UNITAL STATE AND ADDRESS OF A DOCTOR	NUMBER OF STREET, STREE	CANADAR HOME DAY AND THE	Anter change in the analysis of the second secon	Persona a contra persona s
A	В	$Y = \overline{AB}$	NMOS-A	NMOS-B	PMOS-A	PMOS-B
0	0	1	Off	Off	On	On
0	1	1	Off	On	On	Off
1	0	1	On	Off	Off	On
1	1	0	On	On	Off	Off

