ELE 2110A Electronic Circuits

Week 11: Differential Amplifiers

Topics to cover ...

- Large signal analysis
- AC analysis
- Half-circuit analysis

Reading Assignment: Chap 15.1-15.8 of Jaeger and Blalock or Chap 7.1 - 7.3, of Sedra and Smith

BJT Differential Pair

- Two identical transistors with emitters shorted together, connecting to a resistor or a current source. Transistors operate in active mode.
- Designed to amplify voltage difference between the two inputs
- One of the most used circuit building blocks
 - E.g., as the input stage of opamps

• $|v_d| = |v_{B1} - v_{B2}| < V_T$ for use as a linear amplifier

For $|v_d| > 4V_T$ (≈ 100 mV), the tail current flows almost entirely in one of the two transistors

- This high sensitivity makes the differential pair a fast current switch
- The transistors are either in active mode or in cutoff mode
 - Also contributes to high switching speed

MOS Differential Pair

Assuming identical devices and neglecting the output resistance and body effect, the drain currents are

$$\begin{cases} i_{D1} = \frac{1}{2} k_n' \frac{W}{L} (v_{GS1} - V_t)^2 \\ i_{D2} = \frac{1}{2} k_n' \frac{W}{L} (v_{GS2} - V_t)^2 \end{cases}$$

$$\begin{cases} \sqrt{i_{D1}} = \sqrt{\frac{1}{2}k_n'} \frac{W}{L} (v_{GS1} - V_t) \\ \sqrt{i_{D2}} = \sqrt{\frac{1}{2}k_n'} \frac{W}{L} (v_{GS2} - V_t) \end{cases}$$

Since, $v_{GS1} - v_{GS2} = v_{id}$

We have
$$\sqrt{i_{D1}} - \sqrt{i_{D2}} = \sqrt{\frac{1}{2}k_n' \frac{W}{L}}v_{id}$$
 (1)

The current-source bias imposes the constrain

$$i_{D1} + i_{D2} = I$$
 (2)

Solving eqs (1) & (2) yields

$$\begin{cases} i_{D1} = \frac{I}{2} + \sqrt{k_n' \frac{W}{L} I} \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{I/k_n' \frac{W}{L}}} \\ i_{D2} = \frac{I}{2} - \sqrt{k_n' \frac{W}{L} I} \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{I/k_n' \frac{W}{L}}} \end{cases}$$

Lecture 11 - 7

For $v_{id} / 2 \ll V_{GS} - V_t$ (small signal approximation)

$$\begin{cases} i_{D1} = \frac{I}{2} + \frac{I}{V_{GS} - V_t} \left(\frac{v_{id}}{2}\right) \\ i_{D2} = \frac{I}{2} - \frac{I}{V_{GS} - V_t} \left(\frac{v_{id}}{2}\right) \end{cases}$$

Since
$$g_m = \frac{2(I/2)}{V_{GS} - V_t} = \frac{I}{V_{GS} - V_t}$$

We have the signal component i_d of i_D as

$$i_d = g_m(v_{id} / 2)$$

At full switching situation (that is, $i_{D1}=I$ and $i_{D2}=0$, or vice versa), the value of v_{id} is:

$$\left| v_{id} \right|_{\max} = \sqrt{2} \left(V_{GS} - V_t \right)$$

Topics to cover ...

• Large signal analysis

AC analysis

• Half-circuit analysis

Modeling Inputs

Common-mode component: (the average)

$$v_{ic} = \frac{v_1 + v_2}{2}$$

Differential-mode component: (the difference)

$$v_{id} = v_1 - v_2$$

Differential Mode Input

Analyze the circuit by superposition of DM and CM signals

First set the common-mode input to 0:

AC Analysis for Differential-Mode Input

Voltage Gain for Differential Output

Voltage Gain for Single-ended Output

If either v_{c1} or v_{c2} is used alone as output, output is said to be **single**ended.

$$A_{dd1} = \frac{\frac{v_{c1}}{v_{id}}}{\frac{v_{ic}}{v_{ic}}} = 0 = -\frac{\frac{g_m R_C}{2}}{2} = \frac{\frac{A_{dd}}{2}}{2} \qquad A_{dd2} = \frac{\frac{v_{c2}}{v_{id}}}{\frac{v_{ic}}{v_{ic}}} = 0 = \frac{\frac{g_m R_C}{2}}{2} = -\frac{\frac{A_{dd}}{2}}{2}$$

Differential-Mode Input Resistance

Differential-mode input resistance:

$$\therefore R_{id} = \frac{\overset{v}{id}}{\overset{b}{_{1}}} = 2r_{\pi} \qquad \text{since} \qquad i_{b1} = \frac{(\overset{v}{_{id}}/2)}{r_{\pi}}$$

Output Resistances

Differential-mode output resistance is the resistance seen between V_{C1} and V_{C2} :

$$R_{od} = 2(R_C | r_o) \cong 2R_C$$

Single-ended output resistance is the resistance seen between V_{C1} (or V_{C2}) and ground:

$$R_{od} \cong R_C$$

Common Mode Input

Set differential-mode input to 0:

AC Analysis for Common-Mode Input

Emitter Voltage

Emitter not AC ground for CM input.

Common-Mode Input Resistance

CM input resistance is the resistance seen between the shorted bases (V_{ic}) and ground:

$$R_{ic} = \frac{v_{ic}}{2i} = \frac{r_{\pi} + 2(\beta + 1)R_{EE}}{2} = \frac{r_{\pi}}{2} + (\beta + 1)R_{EE}$$

Two i_b are drawn from the input voltage source consisting two parallel V_{ic}.

Common-Mode Rejection Ratio

CMRR is defined as

$$\mathrm{CMRR} \equiv \frac{A_{dm}}{A_{cm}}$$

- represents ability of amplifier to amplify desired DM input signal and reject undesired CM input signal.
- For output defined differentially, the common-mode gain of a balanced amplifier is zero → CMRR is infinite
 - Many noises appear in common form to the input and thus do not appear at the output

Resistor Mismatch

• Consider mismatches between R_c (which always exists):

DM and CM Gains

Define the DM and CM outputs as

$$v_{od} = v_{c1} - v_{c2}$$

$$v_{oc} = \frac{v_{c1} + v_{c2}}{2}$$

Output and input are related by the gain matrix:

$$\begin{bmatrix} v \\ od \\ v_{oc} \end{bmatrix} = \begin{bmatrix} A & A \\ dd & cd \\ A & A_{cc} \end{bmatrix} \begin{bmatrix} v & id \\ v & ic \end{bmatrix}$$

where

 A_{dd} = differential-mode gain

 A_{cd} = common-mode to differential-mode conversion gain

 A_{cc} = common-mode gain

 A_{dc} = differential mode to common-mode conversion gain

For ideal symmetrical amplifier,

$$A_{cd} = A_{dc} = 0.$$

$$\therefore \begin{bmatrix} v_{od} \\ v_{oc} \end{bmatrix} = \begin{bmatrix} A & 0 \\ dd & A_{cc} \end{bmatrix} \begin{bmatrix} v_{id} \\ v_{ic} \end{bmatrix}$$

Purely differential-mode input gives purely differential-mode output and vice versa.

Topics to cover ...

- Large signal analysis
- AC analysis

• Half-circuit analysis

Half-Circuit Analysis

- Redraw the differential amplifier in a fully symmetrical form
 - power supplies are split into two equal halves in parallel
 - emitter resistor is separated into two equal resistors in parallel
 - For differential mode signals, <u>points on</u> <u>the line of symmetry are grounds</u> for ac analysis
 - $\,\,V_{CC}$ and V_{EE} are AC grounds
 - v_e is AC ground as proven previously
- For common-mode signals, <u>points on line</u> of symmetry are replaced by open circuits
 - b/c no current flows across the line of symmetry

Differential-mode Half-circuits

• The two power supply lines and emitter become ac grounds

Direct analysis of the half-circuits yield:

• The half-circuit represents a C-E amplifier stage

Common-mode Half-circuit

• All points on line of symmetry become open circuits

Common-mode Input Voltage Range

• The CM input signal range for small-signal assumption to be valid is similar to that of an emitter-degenerated CE amplifier:

$$v_{ic} \le 5mV(1+g_m 2R_{EE})$$

R_{EE} is very large in most cases
→ Wide common-mode input range

CM Input Voltage Range

Another condition is that BJT must be in active mode:

For example, if $V_{CC}=V_{EE}$, $V_{EE} >> V_{BE}$, and $R_{C} = R_{EE}$,

$$V_{IC} \leq \frac{V_{CC}}{3}$$

Biasing with Current Source

- Differential amplifiers biased using current sources has
 - A more stabilized operating point
 - A higher effective value of R_{EE} to improve CMRR

 $I_{DC} = I_{SS}$

Equivalent of I_{ss}

DC Analysis $+V_{DD}$ $+V_{DD}$ $\varphi + V_{DD}$ 0 R_D $\begin{cases} R_D \end{cases}$ R_D v_{D1} *v*_{D2} $-0 v_D$ + VOD - M_1 M_1 or M_2 M_2 I. ட v_s - $-0 v_S$ v_1 v_2 $\frac{I_{SS}}{2}$ $\frac{I_{SS}}{2}$ $I_{S} = I_{SS} / 2.$ $\frac{I_{SS}}{2}$ **4**..... --V_{SS} 0 $-V_{SS}$ Ó $-V_{SS}$

DC Half-circuit

$$I_D = \frac{K_n}{2} \left(V_{GS} - V_{TN} \right)^2$$
$$V_{GS} = V_{TN} + \sqrt{\frac{2I_D}{K_n}} = V_{TN} + \sqrt{\frac{I_{SS}}{K_n}}$$

$$V_{D1} = V_{D2} = V_{DD} - I_D R_D \text{ and } V_{OD} = 0$$
$$V_{DS} = V_D - V_S = V_{DD} - I_D R_D + V_{GS}$$

Example

- **Problem:** Find Q-points of transistors in the differential amplifier and the upper limit of input CM voltage.
- **Given data:** $V_{DD} = V_{SS} = 12 \text{ V}$, $I_{SS} = 200 \text{ }\mu\text{A}$, $R_{SS} = 500 \text{ }k\Omega$, $R_D = 62 \text{ }k\Omega$, $\lambda = 0.0133 \text{ V}^{-1}$, $K_n = 5 \text{ }m\text{A}/\text{ }\text{V}^2$, $V_{TN} = 1 \text{ }\text{V}$
- Analysis:

$$I_D = \frac{I_{SS}}{2} = 100 \,\mu\text{A}$$

$$V_{GS} = 1 + \sqrt{\frac{200\,\mu\text{A}}{5\text{mA/V}^2}} = 1.20\text{V}$$

$$V_{DS} = 12 \text{V} - (100 \mu \text{A})(62 \text{k}\Omega) + 1.2 \text{V} = 7 \text{V}$$

To maintain pinch-off operation of M_1 for nonzero V_{IC} ,

$$V_{GD} = V_{IC} - \left(V_{DD} - I_D R_D\right) \le V_{TN}$$

$$\therefore V_{IC} \le V_{DD} - I_D R_D + V_{TN} = 6.8 \text{V}$$

Half Circuit for Differential-mode Input

Half Circuit

$$v_{d1} = -g_m R_D \frac{\frac{v_{id}}{2}}{2}$$
$$v_{d2} = +g_m R_D \frac{\frac{v_{id}}{2}}{2}$$

$$\therefore v_{od} = -g_m R_D v_{id}$$

Gain for DM output is

$$A_{dd} = \frac{\frac{v_{od}}{v_{od}}}{\frac{v_{od}}{v_{ic}}} = 0 = -g_m R_D$$

Gain for single-ended output is

$$R_{id} = \infty$$
 $R_{od} = 2R_D$

Reference Equations

	SINGLE TRANSISTOR FET AMPLIFIERS — APPROXIMATE EXPRESSIONS		
	COMMON-SOURCE	COMMON-DRAIN	COMMON-GATE
Terminal voltage gain	$\cong -\frac{g_m R_L}{1+g_m R_S}$	$\cong + \frac{g_m R_L}{1 + g_m R_L} \cong +1$	$+g_m R_L$
Input resistance	∞	∞	$1/g_m$
Output resistance	$r_o(1+g_m R_S)$	$1/g_m$	$r_o(1+g_m R_{th})$
Input signal range	$0.2(V_{GS} - V_{TN})(1 + g_m R_S)$	$0.2(V_{GS} - V_{TN})(1 + g_m R_L)$	$0.2(V_{GS}-V_{TN})(1+g_m R_{th})$
Current gain	∞	∞	1
·			·

Half Circuit for Common-mode Input

AC Analysis for CM Input

$$v_{d1} = v_{d2} = \frac{-g_m R_D}{1 + 2g_m R_{SS}} v_{ic}$$

Common-mode gain:

Half Circuit

CM input to DM output conversion gain = 0 because

 $v_{od} = v_{d1} - v_{d2} = 0$

Common-mode input resistance:

$$R_{ic} = \infty$$

Common-Mode Rejection ratio

• For DM output,

$$\mathrm{CMRR} = \left| \frac{A_{dm}}{A_{cm}} \right| = \frac{\left| \frac{A_{dm}}{dm} \right|}{0} \to \infty$$

- Mismatch will result in finite CMRR as in the BJT differential pair.
- For single-ended output,

$$CMRR = \left| \frac{A_{dm}}{A_{cm}} \right| = \left| \frac{A_{dd}/2}{A_{cc}} \right| = \left| \frac{-(g_m R_D)/2}{-R_D/(2R_{SS})} \right| = g_m R_{SS}$$

 $-R_{SS}$ should be maximized

Class Exercise

Draw the common-mode and differential-mode half circuits for the differential pair shown below.

Summary

- Properties of the differential pair
 - It amplifies difference between input voltages and reject their common-mode component
 - Most noises, such as power supply noise, appear to be common mode signal and not amplified by the amplifier.
 - CMRR represents its ability to reject CM input signal.
 - It can produce AC ground (for DM input) at emitter without using bypass capacitors
 - Input common mode range is very wide
- Half circuit analysis technique
 - Points on the line of symmetry are open-circuits for CM signal
 - Points on the line of symmetry are AC grounds for DM signal

