ELE 2110A Electronic Circuits

Week 11: Differential Amplifiers

Topics to cover ...

- Large signal analysis
- AC analysis
- Half-circuit analysis

Reading Assignment:
Chap 15.1-15.8 of Jaeger and Blalock or
Chap 7.1-7.3, of Sedra and Smith

BJT Differential Pair

- Two identical transistors with emitters shorted together, connecting to a resistor or a current source. Transistors operate in active mode.
- Designed to amplify voltage difference between the two inputs
- One of the most used circuit building blocks
- E.g., as the input stage of opamps

Large Signal Analysis

$$
\begin{gathered}
i_{C 1}=I_{S} e^{v_{B E 1} / V_{T}} \\
i_{C 2}=I_{S} e^{v_{B E 2} / V_{T}} \\
i_{C 1} / i_{C 2}=e^{\left(v_{B E 1}-v_{B E 2}\right) / V_{T}}=e^{v_{i d} / V_{T}}
\end{gathered}
$$

where $v_{B E 1}-v_{B E 2}=v_{B 1}-v_{B 2}=v_{i d}$

$$
\begin{array}{ll}
I=i_{E 1}+i_{E 2}=i_{C 1} / \alpha+i_{C 2} / \alpha \\
\Rightarrow \frac{\alpha I}{i_{C 1}}=\frac{i_{C 2}}{i_{C 1}}+1 & i_{C 1}=\frac{\alpha I}{1+e^{-v_{i d} / V_{T}}} \\
\Rightarrow i_{C 1}=\frac{\alpha I}{\frac{i_{C 2}}{i_{C 1}}+1} & i_{C 2}=\frac{\alpha I}{1+e^{+v_{i d} / V_{T}}}
\end{array}
$$

Large Signal Analysis

- $\left|\mathrm{v}_{\mathrm{d}}\right|=\left|\mathrm{V}_{\mathrm{B} 1}-\mathrm{V}_{\mathrm{B} 2}\right|<\mathrm{V}_{\mathrm{T}}$ for use as a linear amplifier

For $\left|\mathrm{v}_{\mathrm{d}}\right|>4 \mathrm{~V}_{\mathrm{T}}(\approx 100 \mathrm{mV})$, the tail current flows almost entirely in one of the two transistors

- This high sensitivity makes the differential pair a fast current switch
- The transistors are either in active mode or in cutoff mode
- Also contributes to high switching speed

MOS Differential Pair

Large Signal Analysis

Assuming identical devices and neglecting the output resistance and body effect, the drain currents are

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{D 1}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S 1}-V_{t}\right)^{2} \\
i_{D 2}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S 2}-V_{t}\right)^{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
\sqrt{i_{D 1}}=\sqrt{\frac{1}{2} k_{n}^{\prime} \frac{W}{L}}\left(v_{G S 1}-V_{t}\right) \\
\sqrt{i_{D 2}}=\sqrt{\frac{1}{2} k_{n}^{\prime} \frac{W}{L}}\left(v_{G S 2}-V_{t}\right)
\end{array}\right.
\end{aligned}
$$

Fig. 6.29 The MOSFET differential pair.

Since, $\quad v_{G S 1}-v_{G S 2}=v_{i d}$
We have $\sqrt{i_{D 1}}-\sqrt{i_{D 2}}=\sqrt{\frac{1}{2} k_{n}^{\prime} \frac{W}{L}} v_{i d}$
The current-source bias imposes the constrain

$$
\begin{equation*}
i_{D 1}+i_{D 2}=I \tag{2}
\end{equation*}
$$

Solving eqs (1) \& (2) yields

$$
\left\{\begin{array}{l}
i_{D 1}=\frac{I}{2}+\sqrt{k_{n}^{\prime} \frac{W}{L} I}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\frac{\left(v_{i d} / 2\right)^{2}}{I / k_{n}^{\prime} \frac{W}{L}}} \\
i_{D 2}=\frac{I}{2}-\sqrt{k_{n}^{\prime} \frac{W}{L} I}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\frac{\left(v_{i d} / 2\right)^{2}}{I / k_{n}^{\prime} \frac{W}{L}}}
\end{array}\right.
$$

Large Signal Analysis

At the bias point, $v_{i d}=0$, leading to $i_{D 1}=i_{D 2}=\frac{I}{2}$
Correspondingly, $v_{G S 1}=v_{G S 2}=V_{G S}$
where $\frac{I}{2}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}$$\quad \therefore\left\{\begin{array}{l}i_{D 1}=\frac{I}{2}+\frac{I}{V_{G S}-V_{t}}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\left(\frac{v_{i d} / 2}{V_{G S}-V_{t}}\right)^{2}} \\ i_{D 2}=\frac{I}{2}-\frac{I}{V_{G S}-V_{t}}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\left(\frac{v_{i d} / 2}{V_{G S}-V_{t}}\right)^{2}}\end{array}\right.$

Large Signal Analysis

For $v_{i d} / 2 \ll V_{G S}-V_{t}$ (small signal approximation)

$$
\left\{\begin{array}{l}
i_{D 1}=\frac{I}{2}+\frac{I}{V_{G S}-V_{t}}\left(\frac{v_{i d}}{2}\right) \\
i_{D 2}=\frac{I}{2}-\frac{I}{V_{G S}-V_{t}}\left(\frac{v_{i d}}{2}\right)
\end{array}\right.
$$

Since $g_{m}=\frac{2(I / 2)}{V_{G S}-V_{t}}=\frac{I}{V_{G S}-V_{t}}$

We have the signal component i_{d} of i_{D} as

$$
i_{d}=g_{m}\left(v_{i d} / 2\right)
$$

At full switching situation (that is, $\mathrm{i}_{\mathrm{D} 1}=\mathrm{l}$ and $i_{D 2}=0$, or vice versa), the value of $v_{\text {id }}$ is:

$$
\left|v_{i d}\right|_{\max }=\sqrt{2}\left(V_{G S}-V_{t}\right)
$$

Topics to cover ...

- Large signal analysis
- AC analysis
- Half-circuit analysis

Modeling Inputs

Common-mode component: (the average)

$$
v_{i c}=\frac{v_{1}+v_{2}}{2}
$$

Differential-mode component: $\quad v_{i d}=v_{1}-v_{2}$ (the difference)

Differential Mode Input

Analyze the circuit by superposition of DM and CM signals

First set the common-mode input to 0 :

AC Analysis for Differential-Mode Input

Ignoring r_{0}, we have $g_{m} v_{3}+\frac{v_{3}}{r_{\pi}}+g_{m}{ }_{4}+\frac{v^{2}}{r_{\pi}}=\frac{v_{e}}{R_{E E}} \rightarrow\left(g_{m}+\frac{1}{r_{\pi}}\right)\left(v_{3}+v_{4}\right)=\frac{v_{e}}{R_{E E}}$

$$
\rightarrow\left(g_{m}+\frac{1}{r_{\pi}}\right)\left(-2 v_{e}\right)=\frac{v_{e}}{R_{E E}} \rightarrow v_{e} \quad \begin{aligned}
& \text { Emitter = AC ground for DM input. } \\
& \text { No bypass cap is needed! }
\end{aligned}
$$

Voltage Gain for Differential Output

Differential-mode gain is:
Differential output:

$$
v_{o d}=v_{c 1}-v_{c 2}=-g_{m} R_{C} v_{i d}
$$

$$
A_{d d} \equiv \frac{\mathrm{v}_{\mathrm{od}}^{\mathrm{v}_{\mathrm{id}}}}{\mathrm{v}_{\mathrm{ic}}}=0
$$

Voltage Gain for Single-ended Output

If either $v_{c 1}$ or $v_{c 2}$ is used alone as output, output is said to be singleended.

$$
\left.A_{d d 1} \equiv \frac{v_{c 1}}{v_{i d}}\right|_{v_{i c}=0}=-\frac{g_{m} R_{C}}{2}=\left.\frac{A d d}{2} \quad A_{d d 2} \equiv \frac{{ }_{c 2}}{v_{i d}}\right|_{v_{i c}=0}=\frac{g_{m} R_{C}}{2}=-\frac{A d d}{2}
$$

Differential-Mode Input Resistance

Differential-mode input resistance:

$$
\therefore R_{i d} \equiv \frac{v_{i d}}{i}=2 r_{\pi 1} \quad \text { since } \quad i_{b 1}=\frac{\left(v_{i d} / 2\right)}{r_{\pi}}
$$

Output Resistances

Differential-mode output resistance is the resistance seen between $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$:

$$
R_{o d}=2\left(R_{C} \|_{o}\right) \cong 2 R_{C}
$$

Single-ended output resistance is the resistance seen between $\mathrm{V}_{\mathrm{C} 1}$ (or $\mathrm{V}_{\mathrm{C} 2}$) and ground:

$$
R_{o d} \cong R_{C}
$$

Common Mode Input

Set differential-mode input to 0 :

AC Analysis for Common-Mode Input

Circuit is symmetrical

Ignoring $\left.r_{0}: \quad 2(1+\beta) i_{b}=\frac{v_{e}}{R_{E E}}\right\} \rightarrow i_{b}=\frac{v_{i c}}{r_{\pi}+2(\beta+1) R_{E E}}$

$$
v_{e}=v_{i c}-i_{b} r_{\pi}
$$

Output voltages are: $\quad v_{c 1}=v_{c 2}=-\beta i_{b} R_{C}=\frac{-\beta R_{C}}{r_{\pi}+2(\beta+1) R_{E E}} v_{i c} \approx=\frac{R_{C}}{2 R_{E E}} v_{i c}$
Differential output $=0$
Common-mode voltage gain for single-ended output

Emitter Voltage

Circuit is symmetrical

$$
i_{b}=\frac{v_{i c}}{r_{\pi}+2(\beta+1) R_{E E}} \rightarrow v_{e}=2(\beta+1) i_{b} R_{E E}=\frac{2(\beta+1) R E E}{r_{\pi}+2(\beta+1) R E E} v_{i c} \cong v_{i c}
$$

Emitter not AC ground for CM input.

Common-Mode Input Resistance

Circuit is symmetrical

CM input resistance is the resistance seen between the shorted bases $\left(\mathrm{V}_{\mathrm{ic}}\right)$ and ground:

$$
R_{i c}=\frac{v_{i c}}{2 i}=\frac{r_{\pi}+2(\beta+1) R E E}{2}=\frac{r^{\pi}}{2}+(\beta+1) R E E
$$

Two i_{b} are drawn from the input voltage source consisting two parallel V_{ic}.

Common-Mode Rejection Ratio

- CMRR is defined as

$$
\mathrm{CMRR} \equiv\left|\frac{A_{d m}}{A_{C m}}\right|
$$

- represents ability of amplifier to amplify desired DM input signal and reject undesired CM input signal.
- For output defined differentially, the common-mode gain of a balanced amplifier is zero \rightarrow CMRR is infinite
- Many noises appear in common form to the input and thus do not appear at the output

Resistor Mismatch

- Consider mismatches between R_{C} (which always exists):

$$
\begin{gathered}
v_{c 1} \cong-\frac{R_{C 1}}{2 R_{E E}} v_{i c} \quad v_{c 2} \cong-\frac{R_{C 2}}{2 R_{E E}} v_{i c} \\
v_{o d}=v_{c 1}-v_{c 2} \cong \frac{R}{C 2}-R_{C 1} v_{i c}=\frac{\Delta R_{C}}{R_{C}} \frac{R_{C}}{2 R_{E E}} v_{i c}
\end{gathered}
$$

where $\frac{\Delta R_{C}}{R_{C}}=\frac{R_{C 1}-R_{C 2}}{\left(R_{C 1}+R_{C 2}\right) / 2} \quad$ represents fractional mismatch
$\therefore \mathrm{CMRR} \equiv\left|\frac{A_{d m}}{A_{c m}}\right| \frac{g_{m} R_{C}}{\frac{\Delta R_{C}}{R_{C}{ }^{2}{ }^{2} R_{E E}}}=g_{m} R_{E E}\left(\frac{\Delta R_{C}}{R_{C}}\right)^{-1}$
$\rightarrow R_{E E}$ should be maximized for good CMRR

DM and CM Gains

Define the DM and CM outputs as

$$
\begin{aligned}
& v_{o d}=v_{c 1}-v_{c 2} \\
& v_{o c}=\frac{v_{c 1}+v_{c 2}}{2}
\end{aligned}
$$

Output and input are related by the gain matrix:

$$
\left[\begin{array}{l}
v_{o d} \\
v_{o c}
\end{array}\right]=\left[\begin{array}{ll}
A_{d d} & A_{c d} \\
A_{d c} & \\
A_{c c}
\end{array}\right]\left[\begin{array}{l}
v_{i d} \\
v_{i c}
\end{array}\right]
$$

where
$A_{d d}=$ differential-mode gain
$A_{c d}=$ common-mode to differential-mode conversion gain
$A_{c c}=$ common-mode gain
$A_{d c}=$ differential mode to common-mode conversion gain

For ideal symmetrical amplifier,

$$
A_{c d}=A_{d c}=0 .
$$

$$
\therefore\left[\begin{array}{l}
v_{o d} \\
v_{o c}
\end{array}\right]=\left[\begin{array}{cc}
A_{d d} & 0 \\
0 & A_{c c}
\end{array}\right]\left[\begin{array}{l}
v_{i d} \\
v_{i c}
\end{array}\right]
$$

Purely differential-mode input gives purely differential-mode output and vice versa.

Topics to cover ...

- Large signal analysis
- AC analysis
- Half-circuit analysis

Half-Circuit Analysis

- Redraw the differential amplifier in a fully symmetrical form
- power supplies are split into two equal halves in parallel
- emitter resistor is separated into two equal resistors in parallel
- For differential mode signals, points on the line of symmetry are grounds for ac analysis
- $V_{C C}$ and $V_{E E}$ are $A C$ grounds
- v_{e} is $A C$ ground as proven previously
- For common-mode signals, points on line of symmetry are replaced by open circuits
- b/c no current flows across the line of symmetry

Differential-mode Half-circuits

Direct analysis of the half-circuits yield:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{c} 1}=-g_{m} R_{C} \frac{\mathrm{v}_{\mathrm{id}}}{2} \\
& \mathrm{v}_{\mathrm{c} 2}=+g_{m} R_{C} \frac{\mathrm{v}_{\mathrm{id}}}{2} \\
& \mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\mathrm{c} 1}-\mathrm{v}_{\mathrm{c} 2}=-g_{m} R_{C} \mathrm{v}_{\mathrm{id}} \\
& R_{i d}=\mathrm{v}_{\mathrm{id}} / \mathrm{i}_{\mathrm{b} 1}=2 r_{\pi} \\
& R_{o d}=2\left(R_{C} \| r_{o}\right)
\end{aligned}
$$

- The two power supply lines and emitter become ac grounds
- The half-circuit represents a C-E amplifier stage

Common-mode Half-circuit

- All points on line of symmetry become open circuits

Common-mode Input Voltage Range

- The CM input signal range for small-signal assumption to be valid is similar to that of an emitter-degenerated CE amplifier:

$$
v_{i c} \leq 5 m V\left(1+g_{m} 2 R_{E E}\right)
$$

- R_{EE} is very large in most cases
\rightarrow Wide common-mode input range

CM Input Voltage Range

Another condition is that BJT must be in active mode:

$$
\begin{aligned}
& V_{C B}=V_{C C}-I_{C} R_{C}-V_{I C} \geq 0 \\
& I_{C}=\alpha \frac{V_{I C}-V_{B E}+V_{E E}}{2 R_{E E}} \\
& \therefore V_{I C} \leq \frac{V_{C C}-\frac{\alpha R_{C}\left(V_{E E}-V_{B E}\right)}{2 R_{E E}}}{1+\frac{\alpha R_{C}}{2 R_{E E}}}
\end{aligned}
$$

For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}, V_{E E} \gg V_{B E}$, and $R_{C}=R_{E E}$,

$$
V_{I C} \leq \frac{V_{C C}}{3}
$$

Biasing with Current Source

- Differential amplifiers biased using current sources has
- A more stabilized operating point
- A higher effective value of $R_{E E}$ to improve CMRR

$$
I_{D C}=I_{S S}-\frac{V_{0}}{R_{S S}}
$$

Equivalent of $I_{\text {ss }}$

DC Analysis

DC Half-circuit

$$
\begin{array}{ll}
I_{D}=\frac{K_{n}}{2}\left(V_{G S}-V_{T N}\right)^{2} & V_{D 1}=V_{D 2}=V_{D D}-I_{D} R_{D} \text { and } V_{O D}=0 \\
V_{G S}=V_{T N}+\sqrt{\frac{2 I}{K_{n}}}=V_{T N}+\sqrt{\frac{I_{S S}}{K_{n}}} & V_{D S}=V_{D}-V_{S}=V_{D D}-I_{D} R_{D}+V_{G S}
\end{array}
$$

Example

- Problem: Find Q-points of transistors in the differential amplifier and the upper limit of input CM voltage.
- Given data: $V_{D D}=V_{S S}=12 \mathrm{~V}, I_{S S}=200 \mu \mathrm{~A}, R_{S S}=500 \mathrm{k} \Omega, R_{D}=62 \mathrm{k} \Omega$, $\lambda=0.0133 \mathrm{~V}^{-1}, \mathrm{~K}_{n}=5 \mathrm{~mA} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$
- Analysis:

$$
\begin{aligned}
& I_{D}=\frac{I S S}{2}=100 \mu \mathrm{~A} \\
& V_{G S}=1+\sqrt{\frac{200 \mu \mathrm{~A}}{5 \mathrm{~mA} / \mathrm{V}^{2}}}=1.20 \mathrm{~V} \\
& V_{D S}=12 \mathrm{~V}-(100 \mu \mathrm{~A})(62 \mathrm{k} \Omega)+1.2 \mathrm{~V}=7 \mathrm{~V}
\end{aligned}
$$

To maintain pinch-off operation of M_{1} for nonzero $V_{I C}$,

$$
\begin{aligned}
& V_{G D}=V_{I C}-\left(V_{D D}-I_{D} R_{D}\right) \leq V_{T N} \\
& \therefore V_{I C} \leq V_{D D^{-I}} D^{R} D^{+V_{T N}}=6.8 \mathrm{~V}
\end{aligned}
$$

Half Circuit for Differential-mode Input

Half Circuit

$$
\begin{aligned}
& v_{d 1}=-g_{m} R D \frac{v_{i d}}{2} \\
& v_{d 2}=+g_{m} R D^{\frac{v_{i d}}{2}} \\
& \therefore v_{o d}=-g_{m} R_{D} v_{i d}
\end{aligned}
$$

Gain for DM output is

$$
A_{d d}=\left.\frac{v_{o d}}{v_{i d}}\right|_{v_{i c}=0}=-g_{m} R_{D}
$$

Gain for single-ended output is

$$
\begin{aligned}
& A_{d d 1}=\left.\frac{{ }^{v} d 1}{v_{i d}}\right|_{v_{i c}=0}=-\frac{g_{m} R}{2}=\frac{A_{d d}}{2} \\
& A_{d d 2}=\left.\frac{v_{d 2}}{v_{i d}}\right|_{v_{i c}=0}=+\frac{g_{m} R D}{2}=-\frac{A_{d d}}{2}
\end{aligned}
$$

DM input and output resistance:

$$
R_{i d}=\infty \quad R_{o d}=2 R_{D}
$$

Reference Equations

	SINGLE TRANSISTOR FET AMPLIFIERS	- APPROXIMATE EXPRESSIONS	
COMMON-SOURCE	COMMON-DRAIN		
Terminal voltage gain	$\cong-\frac{g_{m} R_{L}}{1+g_{m} R_{S}}$	$\cong+\frac{g_{m} R_{L}}{1+g_{m} R_{L}} \cong+1$	$+g_{m} R_{L}$
Input resistance	∞	∞	$1 / g_{m}$
Output resistance	$r_{o}\left(1+g_{m} R_{S}\right)$	$1 / g_{m}$	$r_{o}\left(1+g_{m} R_{t h}\right)$
Input signal range	$0.2\left(V_{G S}-V_{T N}\right)\left(1+g_{m} R_{S}\right)$	$0.2\left(V_{G S}-V_{T N}\right)\left(1+g_{m} R_{L}\right)$	$0.2\left(V_{G S}-V_{T N}\right)\left(1+g_{m} R_{t h}\right)$
Current gain	∞	∞	1

Half Circuit for Common-mode Input

Half Circuit

Rss = Two $2 \mathrm{R}_{\text {ss }}$ in parallel
Common-mode half-circuit = common-source amplifier with $2 R_{S S}$ as source resistor

AC Analysis for CM Input

Half Circuit

$$
v_{d 1}=v_{d 2}=\frac{-g_{m} R D}{1+2 g_{m} R_{S S}} v_{i c}
$$

Common-mode gain:

$$
A_{c c}=\left.\frac{v_{o c}}{v_{i c}}\right|_{v_{i d}=0}=-\frac{g_{m} R_{D}}{1+2 g_{m} R} \cong-\frac{R_{D S}}{2 R}
$$

CM input to DM output conversion gain $=0$ because

$$
v_{o d}=v_{d 1}-v_{d 2}=0
$$

Common-mode input resistance:

$$
R_{i c}=\infty
$$

Common-Mode Rejection ratio

- For DM output,

$$
\mathrm{CMRR}=\left|\frac{A_{d m}}{A_{c m}}\right|=\frac{\left|A_{d m}\right|}{0} \rightarrow \infty
$$

- Mismatch will result in finite CMRR as in the BJT differential pair.
- For single-ended output,

$$
\mathrm{CMRR}=\left|\frac{A_{d m}}{A_{c m}}\right|=\left|\frac{A_{d d} / 2}{A_{c c}}\right|=\left|\frac{-\left(g_{m} R_{D}\right) / 2}{-R_{D} /\left(2 R_{S S}\right)}\right|=g_{m} R_{S S}
$$

- $R_{\text {SS }}$ should be maximized

Class Exercise

Draw the common-mode and differential-mode half circuits for the differential pair shown below.

Summary

- Properties of the differential pair
- It amplifies difference between input voltages and reject their common-mode component
- Most noises, such as power supply noise, appear to be common mode signal and not amplified by the amplifier.
- CMRR represents its ability to reject CM input signal.
- It can produce AC ground (for DM input) at emitter without using bypass capacitors
- Input common mode range is very wide
- Half circuit analysis technique
- Points on the line of symmetry are open-circuits for CM signal
- Points on the line of symmetry are AC grounds for DM signal

