ELE 2110A Electronic Circuits

Week 12: Output Stages, Frequency Response

(2 hours only)

Lecture 12 - 1

Topics to cover ...

- Output Stages
- Amplifier Frequency Response

Reading Assignment: Chap 15.3, 16.1 of Jaeger and Blalock or Chap 14.1 – 14.4 of Sedra & Smith

Multistage Amplifiers

Practical amplifiers usually consist of a number of stages connected in cascade.

- The first (input) stage is usually required to provide
 - a high input resistance
 - a high common-mode rejection for a differential amplifier
- Middle stages are to provide
 - majority of voltage gain
 - conversion of the signal from differential mode to single-end mode
 - shifting of the dc level of the signal
- The last (output) stage is to provide
 - a low output resistance in order to
 - avoid loss of gain and
 - provide the current required by the load (power amplifiers)

Example

- The input stage (Q₁, Q₂) is differential-in and differentialout
 - biased by current source Q₃
- (Q₄, Q₅) is a differential-in and single-ended-out stage
 - biased by current source Q₆
- Q₇ provides
 - additional gain
 - shifting the dc level of the signal
- The output stage Q₈ is an emitter follower

Output Stages

- Function of an output stage is
 - To provide a low output resistance so that it can deliver the output signal to the load without loss of gain
- Requirements of an output stage:
 - Large input signal range
 - b/c it is the final stage of the amplifier, and usually deals with relatively large signals.
 - Small-signal approximations and models either are not applicable or must be used with care.
 - Low distortion
 - High power efficiency

Classification of Output Stages

Collector or Drain current waveforms of different output stages

- Class A: the transistor conducts for the entire cycle of the input signal
- Class B: the transistor conducts for only half the cycle
- Class AB: conduction cycle is greater than 180° and less than 360°
 - Used for opamp output stage and audio power amplifiers
- Class C: conduction cycle is less than 180°
 - Used for radio-frequency (RF) power amplifications (mobile phones, radio and TV)

Class-A Amplifier: Source/Emitter Follower

For a source follower biased by an ideal current source, $v_{\rm GS}$ is fixed and

$$v_O = v_I - V_{GS1} = v_I - \left(V_{TN} + \sqrt{\frac{2I_{SS}}{K_n}}\right)$$

Input range:

$$-V_{SS} + V_{GS} \leq v_I \leq V_{DD} + V_{TN}$$

Output range:

$$-V_{SS} \le v_O \le V_{DD}$$

The largest output voltage is

$$v_o \cong V_{DD} \sin \omega t$$
 (if $V_{SS} = V_{DD}$)

Source Emitter with Load

To maintain class A operation, $i_s > 0$ at all times:

$$\therefore i_{S} = I_{SS} + \frac{v_{O}}{R_{L}} \ge 0$$
$$v_{o} \ge -I_{SS}R_{L}$$

For largest output amplitude: $v_o \cong V_{DD} \sin \omega t$

We have: $V_{DD} \sin \omega t \ge -I_{SS}R_L$ for all t

The lowest value for the LHS occurs when sin $\omega t = -1$,

$$\therefore V_{DD} \le I_{SS} R_L$$
$$\therefore I_{SS} \ge \frac{V_{DD}}{R_L}$$

Lecture 12 - 8

Power Efficiency

The largest output voltage is

$$v_o \cong V_{DD} \sin \omega t$$

Average power supplied to the source follower:

$$P_{av} = \frac{1}{T} \int_0^T \left[I_{SS} \left(V_{DD} + V_{SS} \right) + \left(\frac{V_{DD} \sin \omega t}{R_L} \right) V_{DD} \right] dt$$
$$= I_{SS} \left(V_{DD} + V_{SS} \right) = 2I_{SS} V_{DD} \qquad \text{(if } V_{SS} = V_{DD} \text{)}$$

Average power delivered to the load:

$$P_{ac} = \frac{\left(\frac{V_{DD}}{\sqrt{2}}\right)^2}{R_L} = \frac{V_{DD}^2}{2R_L}$$

Efficiency of amplifier is:

$$\zeta = \frac{P_{ac}}{P_{av}} = \frac{\frac{V_{DD}^2}{2I} (2R_L)}{\frac{2I}{SS} V_{DD}} \qquad | I_{SS} \ge \frac{V_{DD}}{R_L}$$

$$\leq \frac{\frac{V_{DD}^2}{2(2R_L)}}{\frac{2(V_{DD}^2 / (2R_L)^2)}{2(V_{DD}^2 / (2R_L)^2)}} = 25\%$$

- Low efficiency

- Low efficiency

Push-Pull Operation: Class B

When a push-pull amplifier is operated in Class B, all of the output current comes either from the current-sourcing transistor or from the current-sinking device but never from both at the same time.

Source: B. Putzeys, "Digital Audio's final frontier", IEEE Spectrum, Mar 2003.

Class-B Amplifier

 A complementary pair of source followers biased at zero source current

• When

$$V_{TP} \le v_I \le V_{TN}$$

neither transistor conducts

• No quiescent (DC) current consumption!

Class-B Amplifier

- When $V_I > V_{TN}$,
 - M_1 turns on and acts as an source follower, $v_o \approx v_I V_{TN}$
 - M₂ off
 - When $V_I < V_{TP}$,
 - M_2 turns on and acts as an source follower, $v_o \approx v_I V_{TP}$
 - M₁ off
- Power efficiency is high, can be up to about 80%
- Disadv.: Output waveform suffers from a <u>dead-zone</u> \rightarrow Large distortion

Class AB

Class AB exhibits less distortion by allowing the transistors to work together when the output signal is near zero, in what is called the crossover region.

Source: B. Putzeys, "Digital Audio's final frontier", IEEE Spectrum, Mar 2003.

Class-AB Amplifiers

- Remove dead zone by biasing transistors into conduction but at a low quiescent current level
 - Distortion less than Class-B but worse than Class-A amplifier
- For each transistor, 180° < conduction angle < $360^{\circ} \rightarrow$ Class AB amplifier
- Power efficiency lower than Class-B but higher than Class-A amplifier

Class-AB Amplifiers

Biasing examples:

DC currents:

$$I_D = \frac{K_n}{2} \left(\frac{V_{GG}}{2} - V_{TN} \right)^2$$

$$I_C = I_S \exp\left(\frac{I_B R_B}{2V_T}\right)$$

Topics to cover ...

• Output Stages

• Amplifier Frequency Response

Frequency Response of Amplifiers

A typical amplifier:

By-pass high frequency currents

Amplifier's gain is frequency dependent!

Typical Amplifier Transfer Function

- In low frequency side, drop in gain is caused by coupling and bypass capacitors
- In high frequency side, drop in gain is caused by transistor's parasitic capacitors
 - More on this topic later
- In the mid-band range, no capacitors are in effect:
 - Coupling and bypass capacitors are short circuits
 - Transistor parasitic capacitors are open circuits

Estimate *f*_L: Short-Circuit Time Constant Method

 Lower cutoff frequency for a network with *n* coupling and bypass capacitors can be estimated by:

$$\omega_{L} \cong \sum_{i=1}^{n} \frac{1}{R_{iS}C_{i}}$$
$$f_{L} = \omega_{L}^{2\pi}/2\pi$$

 R_{iS} = resistance at terminals of *I*th capacitor C_i with all other capacitors replaced by short circuits.

Product $R_{iS} C_i$ is "short-circuit time constant" associated with C_i .

SCTC: Example

 β = 100 and V_A=75V Q-point: (1.73mA, 2.32V)

BJT small signal parameters:

$$r_{\pi} = \frac{V_T}{I_B} = \frac{25mV}{1.73mA/100} = 1.45k\Omega$$

AC equivalent with **finite** coupling capacitances

$$r_o = \frac{V_A + V_{CE}}{I_C} = \frac{75V + 2.32V}{1.73mA} = 44.7k\Omega$$

Time Constant Associated with C_1

(C_2 and C_3 are short-circuited and set $v_i = 0$)

$$R_{1S} = R_I + (R_B \| R_{in}^{CE}) = R_I + (R_B \| r_{\pi})$$
$$R_{1s} = 1000\Omega + (7500\Omega \| 1450\Omega) = 2220\Omega$$
$$\frac{1}{R_{1s}C_1} = \frac{1}{2.22k\Omega \cdot 2\mu F} = 225 \text{ rad/s}$$

Lecture 12 - 21

 $R_3 \gtrsim$

Time Constant Associated with C_2

$$R_{2S} = R_3 + (R_C \| R_{out}^{CE}) = R_3 + (R_C \| r_o) \cong R_3 + R_C$$
$$R_{2s} = 100k\Omega + (4.3k\Omega \| 44.7k\Omega) = 104k\Omega$$
$$\frac{1}{R_{2s}C_2} = \frac{1}{104k\Omega \cdot 0.1\mu F} = 96.1 \text{ rad/s}$$

Time Constant Associated with C_3

$$R_{3S} = R_E \left\| R_{out}^{CC} = R_E \right\| \frac{r_{\pi} + R_{th}}{\beta + 1}$$
$$= R_E \left\| \frac{r_{\pi} + (R_I \| R_B)}{\beta + 1} \right\|$$

 $1450V + 1000\Omega \parallel 7500\Omega$ 101

$$\frac{1}{R_{3s}C_2} = \frac{1}{22.7k\Omega \cdot 10\mu F} = 4410 \text{ rad/s}$$

Lower Cutoff Frequency

The lower cutoff frequency is:

$$\omega_L \cong \sum_{i=1}^{S} \frac{1}{R_{iS}C_i} = 225 + 96.1 + 4410 = 4730 \ rad/s$$

and

$$f_L = \frac{\omega_L}{2\pi} = 753 \,\mathrm{Hz}$$

In this example the time constant associated with the bypass capacitor C_3 is dominant.

High Frequency Response

• At high frequency side, drop in gain is caused by transistor's parasitic capacitors

High Frequency Small Signal Model for BJT

 C_{π} : diffusion capacitance of the forward-biased base-emitter junction. C_{μ} : depletion capacitance of the reverse-biased base-collector junction.

r_x: the resistance of the silicon material of the base region between the base terminal and the intrinsic base terminal B' that is right under the emitter region.

High-frequency Small Signal Model for MOSFET

 $C_{gs} = \frac{2}{3} WLC_{ox}$ = the capacitance between the Gate and the conducting channel.

 $C_{gd} = C_{ov} = WL_{ov}C_{ox}$ = the overlap capacitance (very small).

Open-Circuit Time Constant Method to Determine f_H

f_H can be estimated by open-circuit time constant method:

$$\omega_{H} \cong \frac{1}{\sum_{i=1}^{m} R_{io}C_{i}}, \quad f_{H} = \omega_{H}/2\pi$$

where R_{io} is resistance at terminals of i^{th} capacitor C_i with all other capacitors open-circuited.

High Frequency Analysis of C-E Amplifier

High Frequency Small Signal Equivalent

Determine A_{mid}

$$v_2 = -g_m(i_s r_{\pi 0})R_L$$

$$i_{\rm S} = \frac{{}^{\rm V} {\rm th}}{R_{th} + r_{\chi}} \qquad r_{\pi O} = r_{\pi} \left[(R_{th} + r_{\chi}) \right]$$

$$\frac{v_2}{v_{th}} = -g_m R_L \frac{r_{\pi 0}}{R_{th} + r_x} = -g_m R_L \frac{r_{\pi}}{R_{th} + r_x + r_{\pi}}$$

$$A_{mid} = -\frac{\beta_o R_L}{R_{th} + r_x + r_\pi} = -\frac{100(4120)}{882 + 250 + 1560} = -153$$

Lecture 12 - 31

OCTC: Time Constant Associated with C_{π}

To find the time constant associated with C_{π} :

(C_{μ} is open-circuited and set $i_s = 0$)

 $R_{\pi 0} = r_{\pi 0} = r_{\pi} \| (R_{th} + r_x) = 1.56k\Omega \| (882\Omega + 250\Omega) = 656\Omega$

$$C_{\pi} = 19.9 \, pF$$

 $C_{\pi} R_{\pi 0} = 1.3 \times 10^{-8}$

OCTC: Time Constant Associated with C_{μ}

To find the time constant associated with C_{μ} : C_{μ} R_{ao} $\sum_{R_L} + C_L + C_L$ $(f)_{g_m v}$ v_2 $g_m v_1 \langle$ (C_{π} is open-circuited and set $i_s = 0$) $v_{x} = i_{x}r_{\pi 0} + i_{L}R_{L} = i_{x}r_{\pi 0} + (i_{x} + g_{m}v)R_{L}$ $\begin{cases} -\frac{1}{R_L} & R_{\mu o} = \frac{v_X}{i_X} = r_{\pi o} \left(1 + g_m R_L + \frac{R_L}{r_{\pi o}} \right) \end{cases}$ $v = i_x r_{\pi 0}$ $g_m v$ $\therefore R_{\mu 0} = 656 \Omega \left(1 + 0.064 (4120) + \frac{4120}{656} \right) = 178 k \Omega$ $C_{\mu}R_{\mu0} = 89.0 \times 10^{-9}$

Lecture 12 - 33

Upper Cutoff Frequency

Upper cutoff frequency:

$$\omega_H \cong \frac{1}{R_{\pi 0} C_{\pi} + R_{\mu 0} C_{\mu}} = \frac{1}{1.3 \times 10^{-8} + 89 \times 10^{-9}} = 9.8 \times 10^6 \text{ rad/s}$$

$$f_H = \frac{\omega_H}{2\pi} = 1.56 \text{ MHz}$$

