ELE 2110A Electronic Circuits

Week 14: Positive Feedback and Oscillator

Lecture 14 - 1

Topics to cover ...

- Positive feedback
- Wien-Bridge Oscillator
- Phase Shift Oscillator

Reading assignment: Chap 17.13 of Jeager and Blalock

Applications of Oscillators

- Clock input for CPU, DSP chips ...
- Local oscillator for radio receivers, mobile receivers, etc
- Signal generation for signal generators in your lab
- Clock input for analog-digital and digital-analog converters

• ...

Positive Feedback

- Designed to produce an output even thought the input is zero
- Use positive feedback through frequency-selective feedback network to ensure sustained oscillation at ω_0

Barkhausen's Criteria for Oscillation

$$A_f(s) = \frac{A(s)}{1 - A(s)\beta(s)} = \frac{A(s)}{1 - T(s)}$$

For sinusoidal oscillations,

 $1 - T(j\omega_o) = 0 \Longrightarrow T(j\omega_o) = +1$

- Barkhausen's criteria: $\angle T(j\omega_o) = 0^\circ$ or multiples of 360° $|T(j\omega_o) = 1$
- An impulse input starts the oscillation
 - Circuit noises, e.g., resistor thermal noise, serve this purpose
- Loop gain greater than unity causes a distorted oscillation to occur

Types of Oscillators

- Oscillators can be categorized as follows according to the types of feedback network used:
 - RC oscillator
 - LC oscillator
 - Crystal oscillator
- We will discuss the first type only

Wien-Bridge Oscillator

$$V_{1}(s) = (1 + \frac{R_{2}}{R_{1}})V_{I}(s) = GV_{I}(s), \qquad G = 1 + \frac{R_{2}}{R_{1}}$$
$$V_{0}(s) = V_{1}(s) \frac{Z_{2}(s)}{Z_{1}(s) + Z_{2}(s)}, \quad s = j\omega$$

Loop gain:

$$T(s) = \frac{V_{o}}{V_{I}} = \frac{j\omega RCG}{(1 - \omega^{2}R^{2}C^{2}) + 3j\omega RC}$$

Break the loop at P to find loop gain:

Phase shift will be zero if $(1-\omega^2 R^2 C^2) = 0$, At $\omega_0 = 1/RC$, $T(j \omega_0) = +\frac{G}{3}$ If G=3, sinusoidal oscillation is achieved.

This oscillator is used for frequencies up to few MHz, limited primarily by characteristics of amplifier.

Phase-Shift Oscillator

- The RC network is to provide 180° phase shift at the desired oscillation frequency
- At least three RC section is required:
 - One RC section can provide 90° phase shift at most:

$$H_{RC}(s) = \frac{R}{R+1/j\omega C} = \frac{j\omega CR}{1+j\omega CR}$$
$$\angle H_{RC}(s) = 90^{\circ} - \tan^{-1}(\omega RC) \le 90^{\circ}$$

– Two RC sections provide 180° phase shift only at $\omega \rightarrow \infty$.

Phase-Shift Oscillator

At

One implementation:

We have:

$$:.T(s) = \frac{V_0(s)}{V_0'(s)} = \frac{s^3 C^3 R^2 R_1}{3s^2 R^2 C^2 + 4sRC + 1}$$

KCL at v_1 and v_2 :

$$\begin{bmatrix} sCV_{0}'(s) \\ 0 \end{bmatrix} = \begin{bmatrix} (2sC+G) & -sC \\ -sC & (2sC+G) \end{bmatrix} \begin{bmatrix} V_{1}(s) \\ V_{2}(s) \end{bmatrix}$$

Phase shift will be zero if
$$(1 - 3\omega_0^2 R^2 C^2) = 0$$
,
 $\therefore \omega_0 = \frac{1}{\sqrt{3}RC}$
At ω_0
 $T(j \,\omega_0) = \frac{\omega_0^2 C^2 RR}{4} = \frac{1}{12} \frac{R_1}{R}$

From v_2 to v_0 :

For R_1 =12R, the Barkhausen's criterion is met.

$$\frac{V_0(s)}{V_2(s)} = -sCR_1$$

Amplitude Stabilization

- As power supply voltage, component values and/or temperature change, the loop gain |Aβ| deviates from 1 → oscillation decays (|Aβ| < 1) or grows (|Aβ| < 1)
- Amplitude stabilization circuit \rightarrow automatically control the loop gain such that A β =1
- Example in Wien-bridge oscillator:

G must = 3 at oscillating freq. When output amplitude increases

- \rightarrow R₁ increases due to heat
- \rightarrow G decreases \rightarrow amplitude decreases

Amplitude Stabilization Circuit Example

Resistance control С R R_2 P W or $10 k\Omega$ $R \ge$ C $12 k\Omega$ R_1 UO. \sim 10 kΩ $\overset{\flat}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\atop}}}}$ $G = 1 + \frac{R_2}{R_1}$ R $10 \text{ k}\Omega$ 1 nF R G = 31 nF $10 k\Omega$

R₄ and diodes D₁ and D₂ form a nonlinear resistor, whose value depends on output amplitude

Feedback Summary

- Feedback combines the advantages of passive circuits and active circuits
- Properties of negative feedback
 - Desensitize the gain
 - Extend the bandwidth
 - Reduce distortion
- Feedback circuits can be classified into four topologies
 - Series-series, series-shunt, shunt-series, shunt-shunt
- Stability is a special issue in feedback circuits. Stability can be determined by
 - Nyquist plot
 - Root locus diagram
 - Phase and gain margin in Bode plots
- Oscillators employ positive feedback circuits

