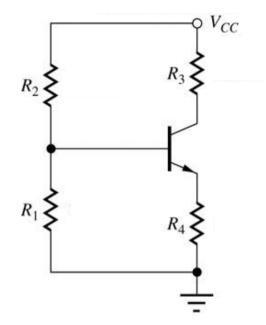
ELE 2110A Electronic Circuits

Week 6: Small Signal Analysis for Single Stage BJT amplifiers

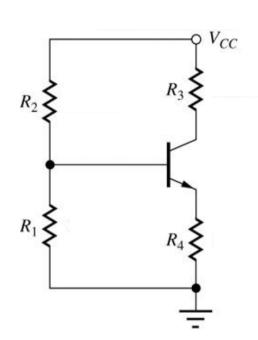
Lecture 06 - 1

Topics to cover ...


- Family of single-stage BJT amplifiers
- Small signal analysis
 - Common-Emitter Amplifier
- Common-Emitter Amplifier with Emitter R
- Common-Base Amplifier

Reading Assignment: Chap 14.1 – 14.5 of Jaeger and Blalock , or Chap 5.7 of Sedra & Smith

Signal Injection


• Transistor is a VCCS: $i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right)$

- To cause changes in current, v_{BE} must be changed
 - Base or emitter terminals can be used as i/p terminal
 - Collector is not used as an i/p terminal because even if Early voltage is considered, collector voltage has negligible effect on terminal currents

Signal Extraction

- Large changes in *i_C* or *i_E* create large voltage drops across collector and emitter resistors
 - Collector or emitter can be used as o/p terminal
 - Base terminal is not used as o/p terminal due to small i_B

BJT Amplifier Family

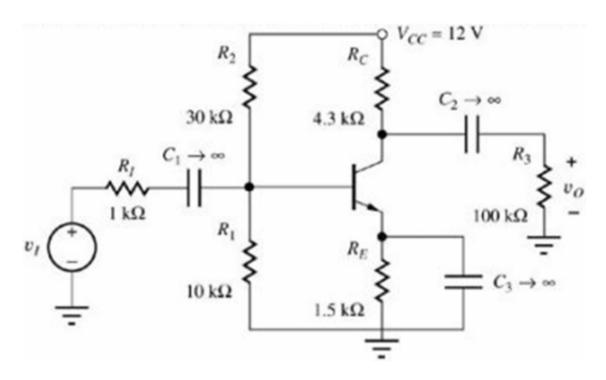
• Constraints for signal injection and extraction yield three families of amplifiers

	Input	Output
 Common-Emitter (C-E): 	Base	Collector
 Common-Base (C-B): 	Emitter	Collector
 Common-Collector (C-C): 	Base	Emitter

 All circuit examples in the following slides use the four-resistor bias circuits to establish Q-point for the various amplifiers.

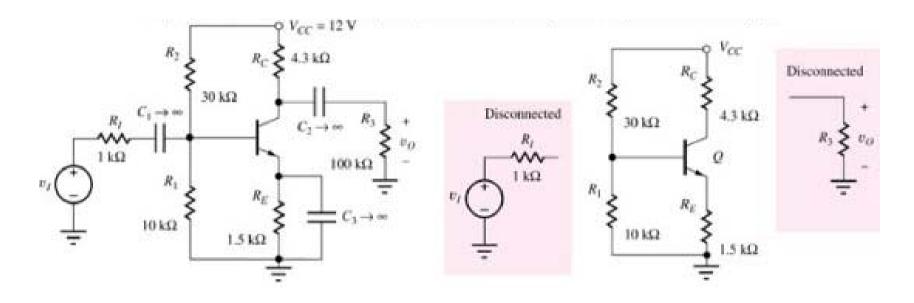
Topics to cover ...

- Family of single-stage BJT amplifiers
- Small signal analysis
 Common-Emitter Amplifier
- Common-Emitter Amplifier with Emitter R
- Common-Base Amplifier

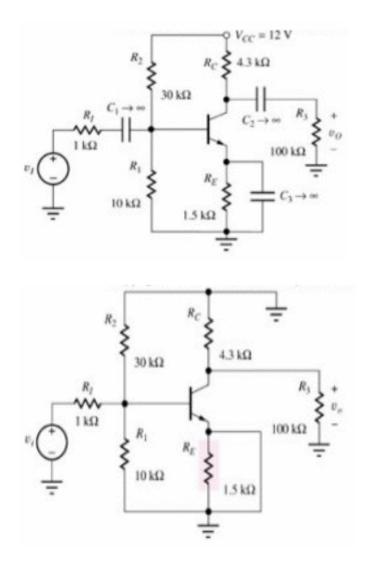

Using Small Signal Models in BJT ckt Analysis

Steps for using small-signal models:

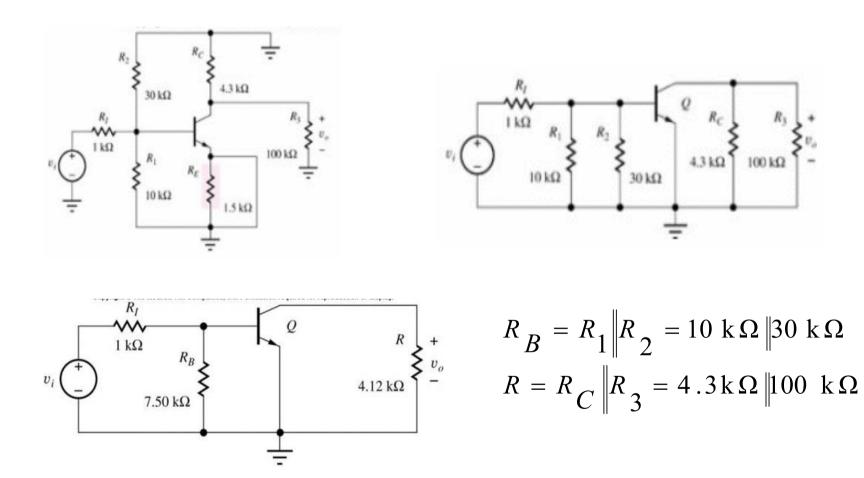
- Determine the DC operating point of the BJT
 - in particular, the collector current
- Calculate small-signal model parameters g_m , r_{π} , & r_e for this DC operating point
- Eliminate DC sources
 - Replace DC voltage sources with short circuits
 - Replace DC current sources with open circuits
- Replace BJT with an equivalent small-signal model
 - Choose most convenient one depending on surrounding circuitry
- Analyze


Common Emitter Amplifier

- Biased using the four-resistor network
- AC input is injected to base through a coupling capacitor
- AC output is taken from collector
- Emitter is ac-grounded


DC operating point

- All capacitors in original amplifier circuits are replaced by open circuits, disconnecting v_l, R_l, and R₃ from circuit
- Q-point can be found from dc equivalent circuit by using DC model for BJT


AC Equivalent

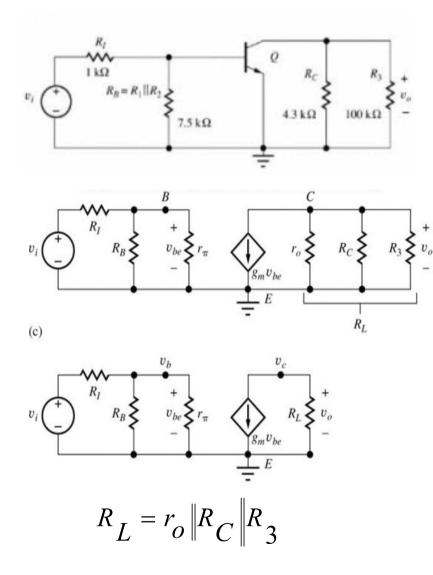
- Replace all ∞ capacitors by short circuits, ∞ inductors by open circuits
- Set all independent DC sources to 0, i.e., replace DC voltage sources by short circuits and DC current sources by open circuits
- Replace transistor by small-signal model
- Use small-signal AC equivalent to analyze AC characteristics of amplifier

Simplified AC Equivalent

Lecture 06 - 11

Small Signal Performance Parameters

In AC analysis, we are interested to find


- Voltage gain
- Input resistance
- Output resistance

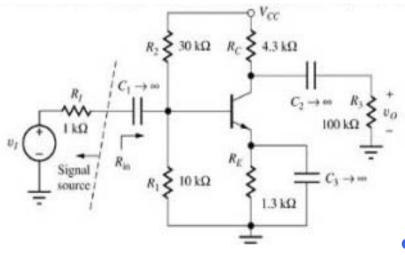
and sometimes

- Current gain
- Input signal range

Voltage Gain

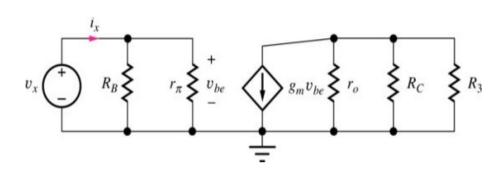
Terminal voltage gain

between base and collector is:


$$A_{vt} = \frac{v_c}{v_b} = \frac{v_o}{v_{be}} = -g_m R_L$$

Overall voltage gain from source v_i to output voltage across R_3 is:

$$A_{v} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{be}}\right) \left(\frac{v_{be}}{v_{i}}\right) = A_{vt} \left(\frac{v_{be}}{v_{i}}\right)$$
$$\therefore A_{v} = -g_{m} R_{L} \left[\frac{R_{B} \|r_{\pi}}{R_{I} + (R_{B} \|r_{\pi})}\right]$$


Input Resistance

 κ_C

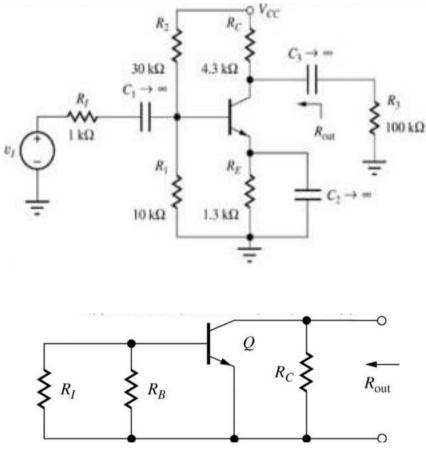
4.3 kΩ

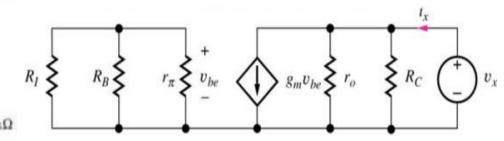
100 kΩ

 The total resistance looking into the amplifier at coupling capacitor C₁ represents total resistance of the amplifier presented to signal source

$$v_{x} = i_{x} (R_{B} || r_{\pi})$$

$$R_{in} = \frac{v_{x}}{i_{x}} = R_{B} || r_{\pi} = R_{1} || R_{2} || r_{\pi}$$

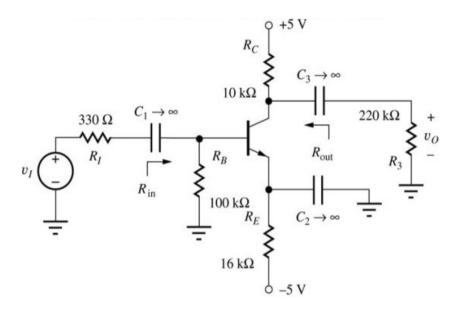

Rin


 R_B

 $30 k\Omega$

 R_2

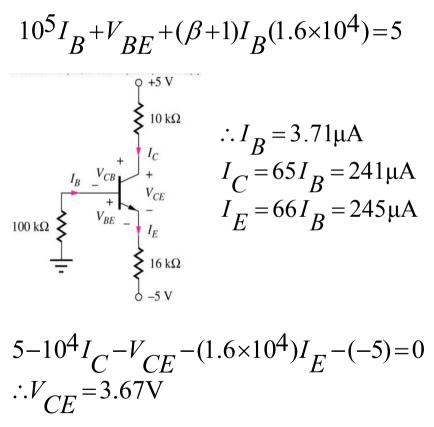
 $10 k\Omega$



- Output resistance is the total equivalent resistance looking into the output of the amplifier at coupling capacitor C₃
- To find R_{out}, input source is set to 0 and test source is applied at output

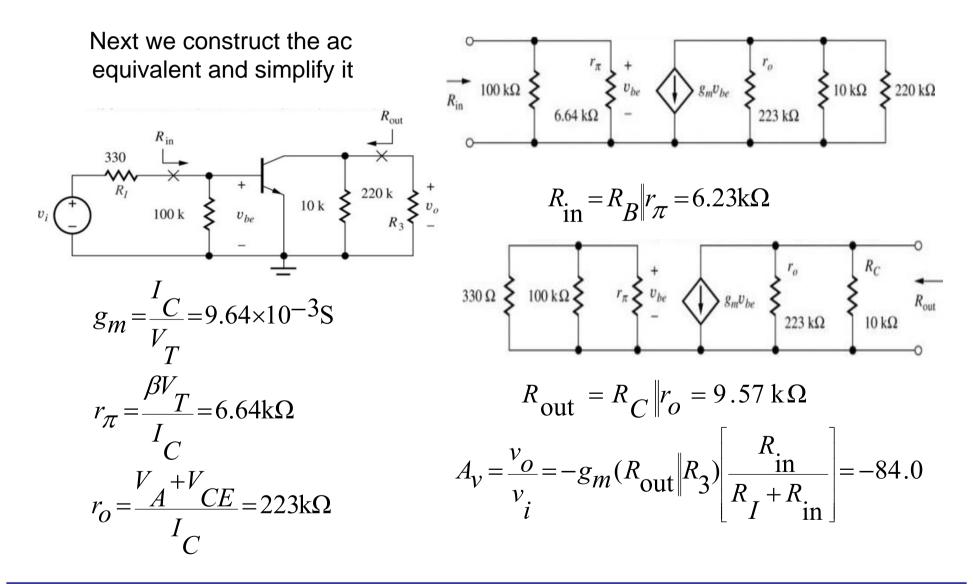
$$i_{X} = \frac{v_{X}}{R_{C}} + \frac{v_{X}}{r_{o}} + g_{m} v_{be} \qquad \text{But } v_{be} = 0.$$

$$\therefore R_{\text{out}} = \frac{v_{X}}{i_{X}} = R_{C} ||r_{o} \cong R_{C} \quad \text{As } r_{o} >> R_{C}.$$



Example 1

- **Problem:** Find voltage gain, input and output resistances.
- **Given data:** β = 65, V_A =50 V
- Assumptions: Active-region operation, V_{BE} =0.7 V, small signal operating conditions.

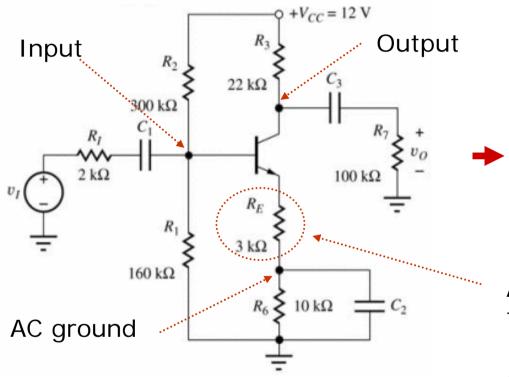

Analysis: To find the Q-point, dc equivalent circuit is constructed.

Active region of operation is correct.

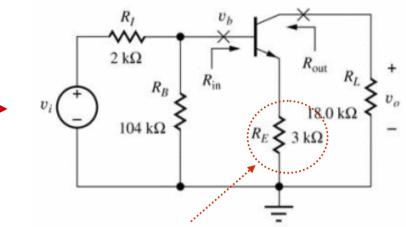
Example 1 (Cont.)

Lecture 06 - 17

Topics to cover ...

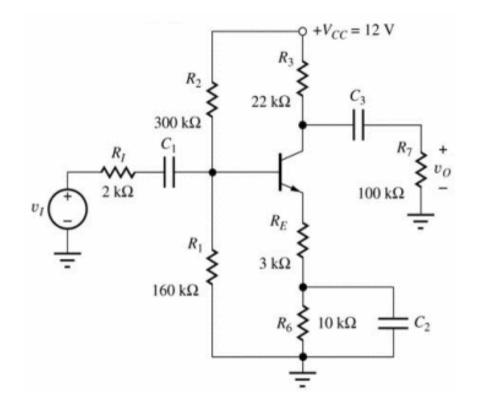

- Family of single-stage BJT amplifiers
- Small signal analysis
 - Common-Emitter Amplifier

• Common-Emitter Amplifier with Emitter R


• Common-Base Amplifier

Common-Emitter Amplifier with Emitter R

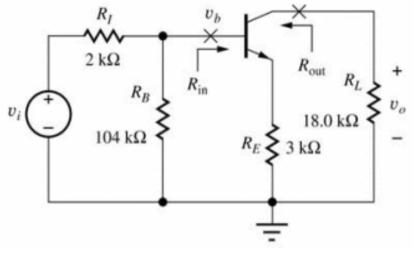
AC equivalent:


A resistor exists at the emitter of the ac equivalent circuit

Also called *emitter degenerated* CE amplifier

R_E provides negative feedback

Negative Feedback due to R_E



- Assume $i_C \uparrow for any reason$
- $i_E (=i_C/\alpha)$ \uparrow
- v_E ↑
- $v_{BE} \downarrow$
- i_C ↓ : counter act the original change

• More discussion on negative feedback later in the course

Overall Voltage Gain

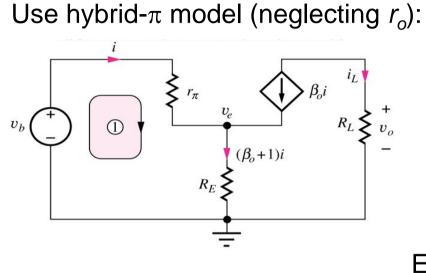
Overall voltage gain from v_i to v_o can be expressed as:

$$A_{v} \equiv \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{b}}\right) \left(\frac{v_{b}}{v_{i}}\right)$$

Define *terminal voltage gain* as:

$$A_{vt} \equiv \frac{v_o}{v_b}$$

And it can be observed that:


$$\frac{v_b}{v_i} = \frac{R_B \parallel R_{in}}{R_I + (R_B \parallel R_{in})}$$

Thus, the task breaks down into two steps:

- Find the terminal voltage gain
- Find the input resistance R_{in}.

Terminal Voltage Gain

$$v_b = ir_{\pi} + (\beta + 1)iR_E$$
$$= i(r_{\pi} + (\beta + 1)R_E)$$

$$v_o = -\beta i R_L$$

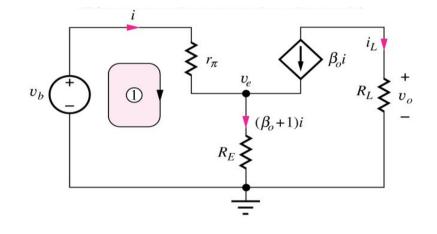
$$A_{vt} \equiv \frac{v_o}{v_b} = -\frac{\beta R_L}{r_{\pi} + (\beta + 1)R_E}$$

Using $r_{\pi}g_m = \beta$, we have

$$A_{vt} = -\frac{g_m r_\pi R_L}{r_\pi + (g_m r_\pi + 1)R_E} \cong -\frac{g_m R_L}{1 + g_m R_E}$$

for $g_m r_\pi = \beta >> 1$

Effect of R_E :


- For $R_E = 0$, $A_{vt} \cong -g_m R_L$ - Upper limit of A_{vt}
- For $g_m R_E >>1$, $A_{vt} = -R_L / R_E$
 - $A_{\gamma t}$ becomes less dependent on g_{m} which varies widely
- Increasing R_E decreases voltage gain!

Input Resistance

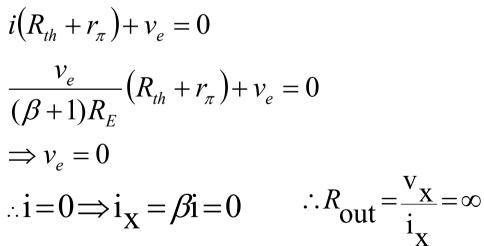
To find $R_{in} \rightarrow$ to find V_{b}/i :

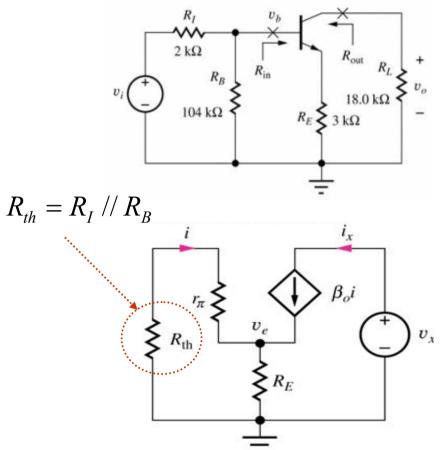
$$v_b = i \big(r_\pi + (\beta + 1) R_E \big)$$

$$R_{in} = \frac{v_b}{i} = r_{\pi} + (\beta + 1)R_E$$
$$= r_{\pi} + (g_m r_{\pi} + 1)R_E$$
$$\cong r_{\pi} (1 + g_m R_E)$$

for $g_m r_{\pi} = \beta >> 1$

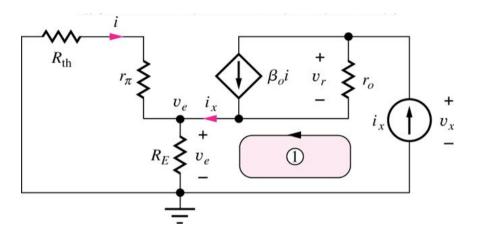
• Increasing R_E increases input resistance!

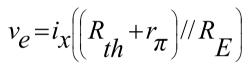



To find R_{out} :

- Set v_i to zero
- Apply a test source at output
- $R_{out} = v_x/i_x$

 $v_e = (\beta + 1)iR_E$


KVL at left mesh:


Now, we also include r_o in our analysis:

KVL along loop 1:

$$v_x = v_r + v_e = (i_x - \beta i)r_o + v_e$$

Voltage at E:

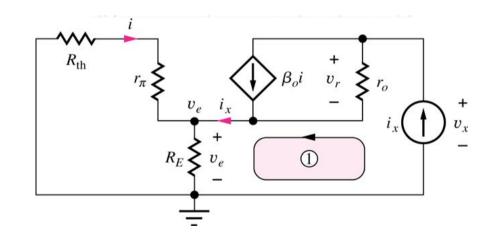
Current division at Emitter:

$$i = -i_{\mathcal{X}} \frac{R_E}{R_E + R_{th} + r_{\pi}}$$

Put 2nd and 3rd equations into 1st equation:

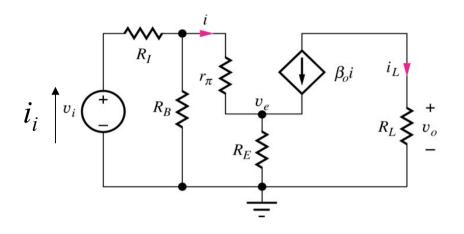
$$\therefore v_{x} = r_{o} \left[i_{x} + \beta i_{x} \frac{R_{E}}{R_{E} + R_{th} + r_{\pi}} \right] + i_{x} \left[\left(R_{th} + r_{\pi} \right) / / R_{E} \right]$$
$$\therefore R_{out} \equiv \frac{v_{x}}{i_{x}} \cong r_{o} \left[1 + \frac{\beta R_{E}}{R_{E} + R_{th} + r_{\pi}} \right] \qquad \text{for large value of } r_{o}$$

$$R_{\text{out}} \cong r_o \left(1 + \frac{\beta R_E}{R_E + R_{th} + r_{\pi}} \right)$$


Assuming $(r_{\pi} + R_E) >> R_{th}$ and $r_o >> R_E$, with $\beta = g_m r_{\pi}$ $R_{out} \cong r_o \left[1 + \frac{g_m r_{\pi} R_E}{R_E + r_{\pi}} \right] = r_o \left[1 + g_m (r_{\pi} / / R_E) \right]$

Effect of R_E:

- For $R_E = 0$, $R_{out} = r_o$
- For R_E = ∞, upper limit of R_{out} is obtained:


$$R_{\text{out}} = (\beta + 1)r_o$$

Increasing R_E increases R_{out}!

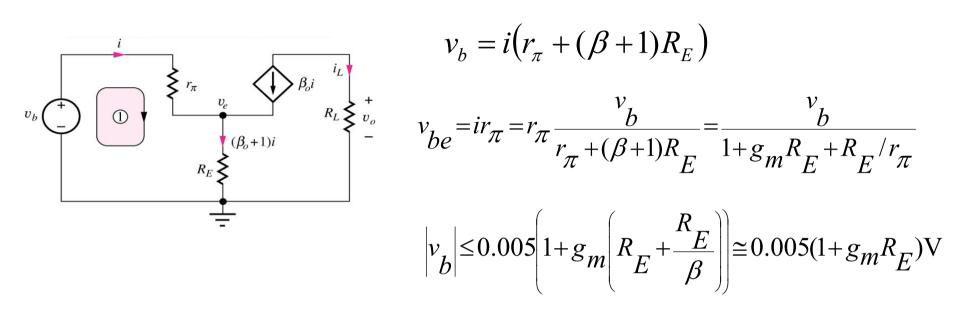
Current Gain

• Terminal current gain: $A_{it} = \frac{i_L}{i} = -\beta$

• Overall current gain:
$$A_i \equiv \frac{i_L}{i_s} = \frac{i_L}{i} \frac{i}{i_s} = A_{it} \frac{R_B}{R_B + R_{in}}$$

Lecture 06 - 27

Input Signal Range


Remember, in deriving the linear small signal model, we assumed v_{be} << V_T :

$$i_{C} = I_{C} e^{v_{be}/V_{T}} \cong I_{C} (1 + v_{be}/V_{T})$$
$$= \underbrace{I_{C}}_{DC} + \underbrace{\frac{I_{C}}{V_{T}}}_{AC} v_{be}$$

Typically, v_{be} is required to be less than 5mV!

Input Signal Range

If $g_m R_E >> 1$, v_b can be increased beyond 5 mV limit.

• Condition for
$$g_m R_E >>1$$
: $g_m R_E = \frac{I_C R_E}{V_T} \cong \frac{I_E R_E}{V_T} >>1$
 $\therefore I_E R_E >>V_T = 0.025 V$

Increasing R_E increases input signal range!

Lecture 06 - 29

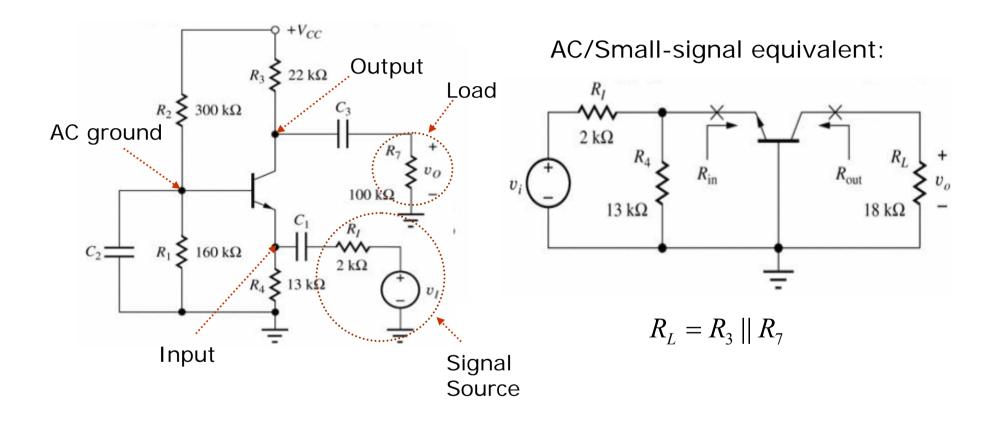
Summary of Emitter Degenerated Common-Emitter Amplifier $g_m R_L$

- Terminal voltage gain: Inverting and Large
- Overall voltage gain: Inverting and Large

$$-\frac{g_m R_L}{1+g_m R_E} \left[\frac{R_B^{//R_{in}}}{R_I + R_B^{//R_{in}}}\right]$$

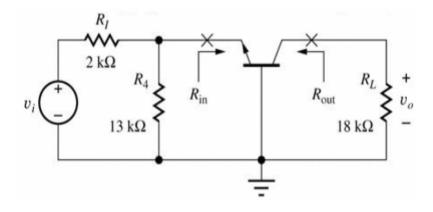
 $1 + g_m R_F$

- Input resistance: Large $r_{\pi}(1+g_m R_E)$
- Output resistance: Large $r_o \left[1 + g_m (r_\pi | R_E)\right]$
- Terminal Current gain: Large $-\beta$
- Effects of the resistor at Emitter:
 - Voltage gain decreased, but more stabilized (less sensitive to g_m)
 - Input signal range increased
 - Input and output resistance increased

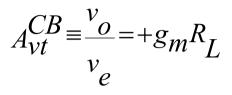

Topics to cover ...

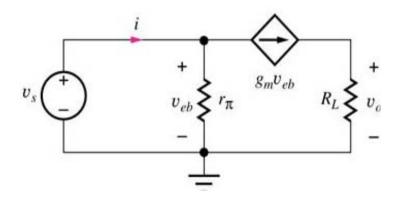
- Family of single-stage BJT amplifiers
- Small signal analysis
 - Common-Emitter Amplifier
- Common-Emitter Amplifier with Emitter R

• Common-Base Amplifier

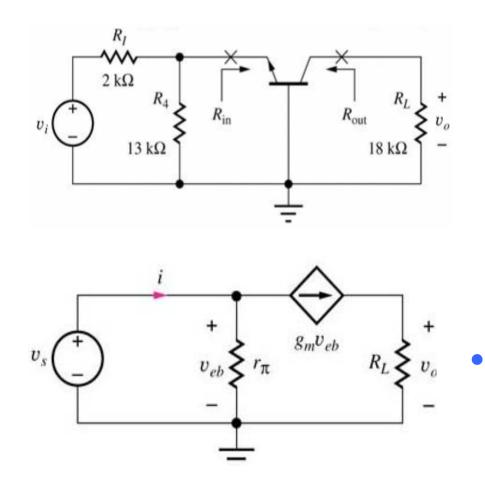


Common-Base Circuits




Terminal Voltage Gain

Apply test source to input (E) And use BJT small signal model:

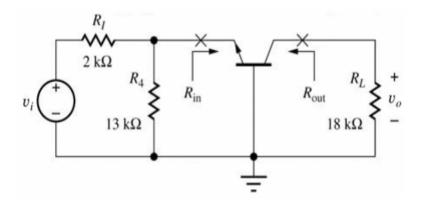


- Non-inverting!
- Magnitude same as the CE amplifier with R_E=0.

Input Resistance

KCL at emitter:

$$i = \frac{v_e}{r_{\pi}} + g_m v_e$$


$$R_{in}^{CB} = \frac{v_e}{i} = \frac{r_{\pi}}{r_{\pi}g_m + 1} = r_{\pi} / (\frac{1}{g_m}) \cong \frac{1}{g_m}$$

R_{in} is small (as g_m is usually large)!

 $(g_m = I_C / V_T)$

Overall Voltage Gain

Overall voltage gain is

$$A_{v}^{CB} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{e}}\right) \left(\frac{v_{e}}{v_{i}}\right) = A_{vt} \left[\frac{\frac{R_{4}}{R_{I}} + \frac{R_{4}}{R_{I}}}{\frac{R_{4}}{R_{I}} + \frac{R_{4}}{R_{I}}}\right]$$
$$= \frac{g_{m}R_{L}}{1 + g_{m}(R_{4}) + \frac{R_{I}}{R_{I}}} \left(\frac{\frac{R_{4}}{R_{I}}}{\frac{R_{4}}{R_{I}} + \frac{R_{4}}{R_{I}}}\right)$$
$$\approx \frac{g_{m}R_{L}}{1 + g_{m}R_{I}} \quad \text{for} \quad R_{4} \gg R_{I}$$

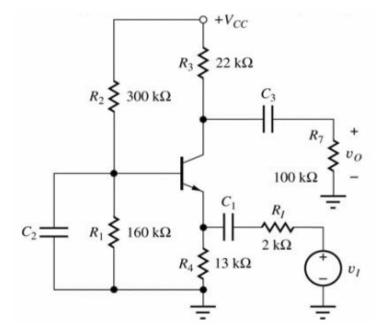
For
$$g_m R_I \ll 1$$
,
 $A_v^{CB} = +g_m R_L$

This is the upper bound.

For
$$g_m R_I >> 1$$
,

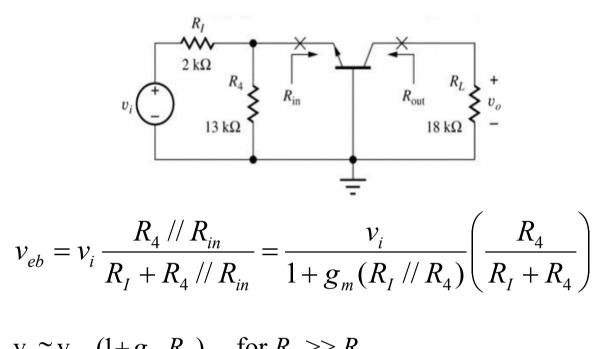
$$A_{v}^{CB} = + \frac{R_{L}}{R_{I}}$$

- For large voltage gain, a very small R₁ is required!
- Not a good candidate for voltage amplifier

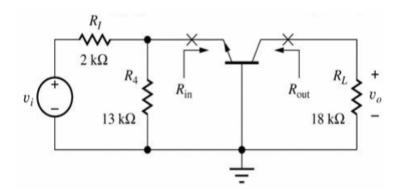


Example

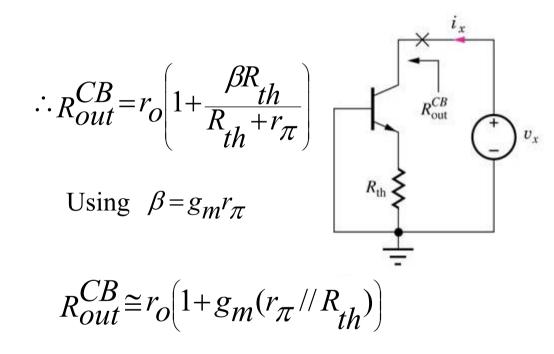
- Problem: Find overall voltage gain.
- **Given data:** β =100, Q-point values: I_C=245uA, V_{CE}=3.64V, g_m=9.8mS, r_{π}=10.2k Ω , r_o=219k Ω .
- Assumptions: Small-signal operating conditions.
- Analysis:


$$R_{in}^{CB} \cong 1/g_m = 102\Omega$$
$$R_L = R_3 ||R_7 = 18k\Omega$$

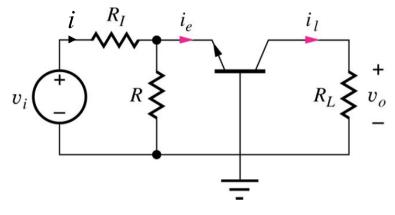
$$A_{vt}^{CB} = +g_m R_L = 176$$
$$A_v^{CB} = \frac{A_{vt}^{CB}}{1 + g_m (R_I \| R_4)} \left(\frac{R_4}{R_I + R_4}\right) = +8.59$$


Input Signal Range

 $v_i \cong v_{eb}(1+g_m R_I)$ for $R_4 >> R_I$. For small-signal operation, $|v_b| \le 0.005(1+g_m R_I)V$


Relative size of g_m and R_l determine signal-handling limit.

Rout here is equivalent to the Rout of CE amplifier with $R_E = R_{th}$ and resistance at base equal to zero.



R_{out} is large.

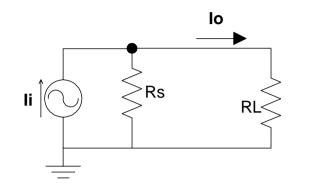
Current Gain

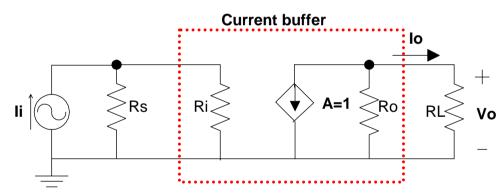
Terminal current gain:

$$A_{it}^{CB} = \frac{i_l}{i_e} = \alpha \cong +1$$

• Current gain from source to load:

$$A_{i}^{CB} = \frac{i}{i} = \left(\frac{i}{i}\left(\frac{i}{i}e\right)\right) = A_{it}\frac{R}{R_{in}+R} \cong A_{it} = 1 \text{ for } R >> R_{in}$$




Summary of Common Base Amplifier

- *Terminal voltage gain*: Non-inverting and Large
- Input resistance: Low
- Output resistance: High
- *Current gain*: close to Unity
- *Input range*: determined by g_mR_{th}
- Excellent for use as a current buffer

Current Buffer

• Without a buffer:

$$I_o = \frac{R_S}{R_S + R_L} I_i \ll I_i \text{ for } R_L >> R_s$$

Only a small portion of source current is delivered to load!

• With a buffer:

$$I_o = \left(\frac{R_S}{R_S + R_i} I_i\right) A \frac{R_O}{R_L + R_O}$$

$$\cong AI_i = I_i \text{ for } R_i << R_S \text{ and } R_O >> R_L$$

- Requirement of a current buffer:
 - Low input resistance
 - High output resistance
 - Unity current gain

