ELE 2110A Electronic Circuits

Week 9: Multivibrators, MOSFET Amplifiers

Lecture 09 - 1

Topics to cover ...

Multivibrators

Single-stage MOSFET amplifiers Common-source amplifier Common-drain amplifier Common-gate amplifier

Reading Assignment: Chap 14.1 - 14.5 of Jaeger and Blalock or Chap 4.6 - 4.7 of Sedra & Smith

Multivibrators

- A multivibrator is used to implement simple **two-state systems** such as oscillators, timers and flip-flops.
- Three types:
 - Astable neither state is stable.
 Applications: oscillator, etc.
 - Monostable one of the states is stable, but the other is not;
 Applications: timer, etc.
 - Bistable it remains in either state indefinitely.
 Applications: flip-flop, etc.

Reference: http://en.wikipedia.org/wiki/Multivibrator

Astable Multivibrator

- Consists of two amplifying devices cross-coupled by resistors and capacitors.
- Typically, $R_2 = R_3$, $R_1 = R_4$, $C_1 = C_2$ and $R_2 >> R_1$.
- The circuit has two states
 - State 1: V_{C1} LOW, V_{C1} HIGH, Q_1 ON (saturation) and Q_2 OFF.
 - State 2: V_{C1} HIGH, V_{C2} LOW, Q_1 OFF and Q_2 ON (saturation).
- It continuously oscillates from one state to the other.

State 1:

- V_{B1} charges up through R_3 from below ground towards V_{CC} .
- When V_{B1} reaches V_{ON} (of $V_{BE,} \approx 1V$), Q_1 turns on and pulls V_{C1} from V_{CC} to $V_{CESat} \approx 0V$.
- Due to forward-bias of the BE junction of Q_1 , V_{B1} remains at 1V.

State 1 (cont'd):

• As C_1 's voltage cannot change instantaneously, V_{B2} drops by V_{CC} .

State 1 (cont'd):

- Q_2 turns off and V_{C2} charges up through R_4 to V_{CC} (speed set by the time constant R_4C_2).
- V_{B2} charges up through R₂ towards V_{CC} (speed set by R₂C₁, which is slower than the charging up speed of V_{C2}).

State 2:

- When V_{B2} reaches V_{ON} , Q_2 turns on and pulls V_{C2} from V_{CC} to 0V.
- V_{B2} remains at V_{ON}.

State 2 (cont'd):

As C₂'s voltage cannot change instantaneously, V_{B1} drops by V_{CC.}

State 2 (cont'd):

- Q_1 turns off and V_{C1} charges up through R_1 to V_{CC} , at a rate set by R_1C_1 .
- V_{B2} charges up through R₃ towards V_{CC}, at a rate set by R₃C₂, which is slower.

Back to state 1:

• When V_{B2} reaches Von, the circuit enters state 1 again, and the process repeats.

Initial Power-Up

- When the circuit is first powered up, neither transistor is ON.
- Parasitic capacitors between B and E of Q_1 and Q_2 are charged up towards V_{CC} through R_2 and R_3 . Both V_{B1} and V_{B2} rise.
- Inevitable slight asymmetries will mean that one of the transistors is first to switch on. This will quickly put the circuit into one of the above states, and oscillation will ensue.

Multivibrator Frequency

$$v_{B1} = (V_{ON} - V_{CC}) + (2V_{CC} - V_{ON})(1 - e^{-t/R_3C_2})$$

$$\approx -V_{CC} + 2V_{CC}(1 - e^{-t/R_3C_2}) \quad \text{for } V_{ON} << V_{CC}$$

At
$$t = T/2$$
, $v_{B1} = V_{ON}$: $V_{ON} = -V_{CC} + 2V_{CC} (1 - e^{-T/2R_3C_2})$

Multivibrator Frequency

$$V_{ON} = -V_{CC} + 2V_{CC} (1 - e^{-T/2R_3C_2})$$

$$\therefore V_{CC} \approx 2V_{CC} (1 - e^{-T/2R_3C_2}) \quad \text{for } V_{ON} << V_{CC}$$

$$\therefore 1 = 2(1 - e^{-T/2R_3C_2})$$

 $\therefore e^{-T/2R_3C_2} = 0.5$

$$\therefore e^{-T/2R_3C_2} = 0.5$$
$$\therefore -\frac{T}{2R_3C_2} = -\ln 2$$
$$\therefore T = 2(\ln 2)R_3C_2$$
or
$$f = \frac{1}{2(\ln 2)R_3C_2}$$

For the above component values, f = 1.53 kHz.

Supply Voltage Limit

- When V_{B1} is negative, BE junction of Q_1 is reverse-biased.
- Suppose the breakdown voltage of this junction is V_{break} (positive). then to avoid breakdown,

$$V_{ON} - V_{CC} > - V_{Break} \implies V_{CC} < V_{ON} + V_{Break}$$

Mono-stable Multivibrator

- Capacitive path between V_{C2} and V_{B1} removed.
- Stable for one state (state 1 here)
 - Q₁ ON and Q₂ OFF
 - V_{C1} LOW, V_{C1} HIGH
- When V_{B2} is momentarily pulled to ground by an external signal
 - $\rm V_{C2}$ rises to $\rm V_{CC}$
 - Q₁ turns on
 - V_{C1} pulled to 0V
- When the external signal goes high
 - V_{B2} charges up to V_{CC} through R_2
 - After a certain time T, $V_{B2}=V_{ON}$, Q_2 turns on
 - V_{C2} pulled to 0V, Q₁ turns off
 - Enters state 1 and remains there
- Can be used as a timer

Bi-stable Multivibrator

- Both capacitors removed
- Stable for either state 1 or 2
- Can be forced to either state by Set or Reset signals
- If Set is low,
 - Q₁ turns off
 - $\,V_{C1}$ (V_{out}) and V_{B2} rises towards V_{CC}
 - Q₂ turns on
 - V_{C2} (/V_{out}) pulled to 0V
 - V_{B1} is latched to 0V
 - Circuit remains in state 2 until Reset is low
- If Reset is low
 - Similar operation
 - Circuit remains in state 1 until Set is low
- Behave as an RS flip-flop

Topics to cover ...

Multivibrators

• Single-stage MOSFET amplifiers

- Common-source amplifier
- Common-drain amplifier
- Common-gate amplifier

Common-Source Amplifier

CS Amplifier With Source Resistor

Also named Source Degenerated Common Source Amplifier

Common-Drain Amplifier/Source Follower

Common Gate Amplifier

Topics to cover ...

• Multivibrators

• Single-stage MOSFET amplifiers

- Common-source amplifier
- Common-drain amplifier
- Common-gate amplifier

Common-Source Amplifier

Terminal voltage gain from gate and drain is:

$$A_{vt} = \frac{v_d}{v_g} = \frac{v_o}{v_{gs}} = -g_m R_L$$

Overall voltage gain from source v_i to v_o :

$$A_{v} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{gs}}\right) \left(\frac{v_{gs}}{v_{i}}\right) = A_{vt} \left(\frac{v_{gs}}{v_{i}}\right)$$
$$\therefore A_{v} = -g_{m}R_{L} \left[\frac{R_{G}}{R_{I} + R_{G}}\right]$$

Input Resistances

- Input resistance (R_{in2})
 looking into the gate terminal is infinite.
- Input resistance (R_{in})
 looking into the

counting canacit decture 09 - 26

Output Resistance

Output resistance looking into the output coupling capacitor:

$$R_{\text{out}} = \frac{\mathbf{v}_{\mathbf{X}}}{\mathbf{i}_{\mathbf{X}}} = R_D \| r_o \cong R_D$$

As $r_o >> R_D$.

C-S Amplifier With Source Resistor

Terminal Voltage Gain

Terminal voltage gain:

$$i_{d} = g_{m}v_{gs}$$

$$v_{gs} = v_{g} - i_{d}R_{S}$$

$$i_{d} = g_{m}(v_{g} - i_{d}R_{S}) \Longrightarrow i_{d} = \frac{g_{m}v_{g}}{1 + g_{m}R_{S}}$$

$$v_{o} = -i_{d}R_{L} \Longrightarrow A_{vt}^{CS} \equiv \frac{v_{o}}{v_{g}} = -\frac{g_{m}R_{L}}{1 + g_{m}R_{S}}$$

Voltage gain is less sensitive to g_m after adding R_s .

Note: body effect and r_o have been ignored.

Input Signal Range

Input signal range: magnitude of v_{gs} must be less than 0.2($V_{GS} - V_{TN}$) $|v_{gs}| = \frac{|v_g|}{1 + g_m R_S} \le 0.2(V_{GS} - V_{TN})$ $|v_g| \le 0.2(V_{GS} - V_{TN})(1 + g_m R_S)$

Presence of $R_{\rm S}$ increases input range.

R_{in} and Overall voltage gain

Input resistance looking into the gate terminal:

$$R_{in}^{CS} = \infty$$

Overall voltage gain:

$$A_{\mathcal{V}}^{CS} = A_{\mathcal{V}t}^{CS} \left[\frac{R_G}{R_I + R_G} \right]$$

Lecture 09 - 31

Output Resistance

Output resistance:

$$v_{s} = i_{d}R_{s}$$

$$v_{d} = v_{s} + r_{o}[i_{d} - g_{m}(-v_{s})]$$

$$v_{d} = i_{d}R_{s} + r_{o}(i_{d} + g_{m}i_{d}R_{s})$$

$$\frac{v_{d}}{i_{d}} = R_{s} + r_{o} + r_{o}g_{m}R_{s} \cong r_{o}(1 + g_{m}R_{s}) \quad \text{for } R_{s} << r_{o}$$

$$\therefore R_{out}^{CS} = r_{o}(1 + g_{m}R_{s})$$

Lecture 09 - 32

Summary of Common Source Amplifier

- Large and Inverting voltage gain
- Infinite input resistance looking into the Gate terminal
- Large output resistance
- Input signal voltage range depends on source resistance
- Suitable for internal voltage gain stage
 - Need a voltage buffer to drive low load resistance.

Topics to cover ...

- MOSFET circuits DC analysis
- Building small signal model for MOSFET
- Single-stage MOSFET amplifiers
 - Common-source amplifier
 - Common-drain amplifier
 - Common-gate amplifier

CD Amplifier / Source Follower

Small Signal Analysis

$$v_o = g_m (v_g - v_o) R_L$$

Terminal voltage gain:

$$\therefore A_{vt}^{CD} = \frac{v_o}{v_g} = + \frac{g_m R_L}{1 + g_m R_L}$$

For most cases, $g_m R_L >> 1$, terminal voltage gain is close to 1. Hence the name source follower. **Input resistance looking into Gate:**

$$R_{in}^{CD} = \infty$$

Overall voltage gain:

$$A_{\mathcal{V}}^{CD} = A_{\mathcal{V}t}^{CD} \left[\frac{R_G}{R_I + R_G} \right]$$

Input signal range:

$$|v_{gs}| = \frac{|v_g|}{1 + g_m R_L} \le 0.2(V_{GS} - V_{TN})$$

$$|v_g| \le 0.2(V_{GS} - V_{TN})(1 + g_m R_L)$$

Output Resistance

Output resistance:
$$i_x = -g_m v_{gs} = -g_m (-v_x) = g_m v_x$$

$$R_{out} = \frac{v_x}{i_x} = \frac{1}{g_m}$$

Note: in the analysis for CD amplifier the body effect has be ignored. More accurate analysis should include the body effect.

Summary of Source Follower

- Unity voltage gain
- Infinite input resistance (excluding the bias resistors)
- Low output resistance (=1/Gm)
- Large input signal voltage range
- Suitable for voltage buffer

Topics to cover ...

- MOSFET circuits DC analysis
- Building small signal model for MOSFET
- Single-stage MOSFET amplifiers
 - Common-source amplifier
 - Common-drain amplifier

- Common-gate amplifier

Common Gate Amplifier

Lecture 09 - 40

Small Signal Analysis

Input resistance looking into Source:

$$R_{in}^{CG} = \frac{1}{g_m}$$
 (same as the R_{out} of CD)

Overall voltage gain:

$$A_{v}^{CG} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{g}}\right) \left(\frac{v_{g}}{v_{i}}\right) = A_{vt}^{CG} \left[\frac{R_{4} \|R_{in}^{CG}}{R_{I} + (R_{4} \|R_{in}^{CG})} - \frac{g_{m}R_{L}}{1 + g_{m}(R_{I} \|R_{4})} \left(\frac{R_{4}}{R_{I} + R_{4}}\right)\right]$$

For
$$R_I >> R_4$$
, $A_V^{CG} \cong \frac{g_m R_L}{1 + g_m R_I}$

Terminal voltage gain:

$$v_o = -g_m v_{gs} R_L$$
$$= -g_m R_L (-v_s)$$

$$A_{vt}^{CG} = +g_m R_L$$

The gain is non-inverting

Input Signal Range

Input signal range:

$$-v_{gs} = \frac{R_4 || (1/g_m)}{R_I + R_4 || (1/g_m)} v_i$$

$$\approx \frac{1/g_m}{R_I + 1/g_m} v_i \quad \text{for } 1/g_m >> R_4$$

$$= \frac{1}{1 + g_m R_I} v_i$$

$$|v_i| \le 0.2(V_{GS} - V_{TN})(1 + g_m R_I)$$

Relative size of g_m and R_I determine signal-handling limits.

Output Resistance

$$R_{th} = R_I \parallel R_4$$

Output resistance:

$$i_x = g_m v_{gs} = g_m (-R_{th} i_x)$$

$$i_x = 0$$
 and thus $R_{out} = \infty$

Including the r_o in the transistor,

$$i_{x} = g_{m}(-v_{s}) + (v_{x} - v_{s}) / r_{o}$$
$$= -v_{s}(g_{m} + 1 / r_{o}) + v_{x} / r_{o}$$
$$v_{s} = R_{th}i_{x}$$

$$R_{out} \equiv \frac{v_x}{i_x} = r_o \left(1 + R_{th} \left(g_m + 1 / r_o \right) \right)$$
$$\cong r_o \left(1 + g_m R_{th} \right)$$

Current Gains

Terminal current gain:

Since $I_D = I_S$, the terminal current is unity.

Overall current gain:

$$A_I = \frac{R_4}{R_4 + 1/g_m} \cong 1$$

Summary of Common Gate Amplifier

- Unity Current Gain
- Large Non-inverting voltage gain
- Low input resistance (=1/Gm)
- Large output resistance
- Input voltage range depends on g_mR₁
- Suitable for current buffer

