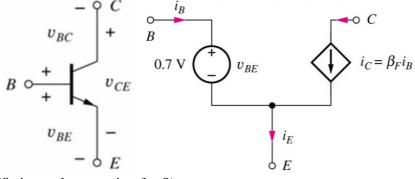
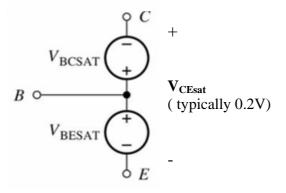
Important formulae and device models for you to prepare for ELE2110A test 2

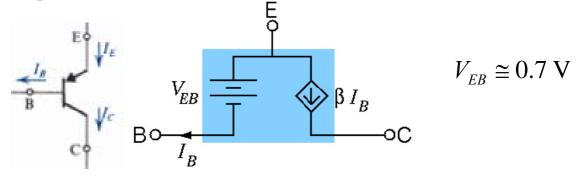

Prof. KP Pun, 13 March 2008

BJT collector current in active mode: $i_C = I_S e^{v_{BE}/V_T}$

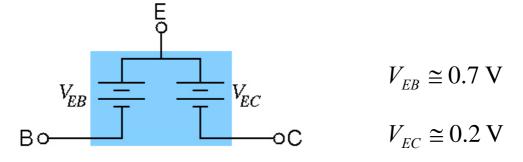
BJT collector current in active mode (including Early effect): $i_c = I_s e^{v_{BE}/V_T} (1 + \frac{V_{CE}}{V_A})$ Relationship between base and collector currents for BJT in active mode: $i_B = \frac{i_c}{\beta}$ Relationship between emitter and collector currents for BJT in active mode: $i_c = \alpha i_E$ Relationship between α and β : $\alpha = \frac{\beta}{1+\beta}$ Single stage BJT amplifier properties:

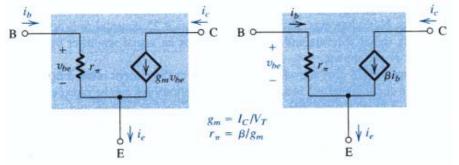

	C-E (R _E =0)	Emitter Degenerated C-E	C-C	C-B
Terminal Voltage Gain	Inverting & large	Inverting & moderate	1	Non-inverting & Large
Input Resistance	Moderate	Large	Large	Low
Output Resistance	Moderate	Large	Low	Large
Input Voltage Range	Small	Moderate	Large	Moderate
Terminal Current Gain	Inverting & Large	Inverting & Large	Non- inverting & Large	1

Simplified DC model for *npn* transistor in active mode:



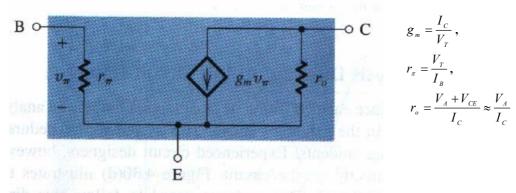
 $(\beta_F \text{ is another notation for } \beta).$

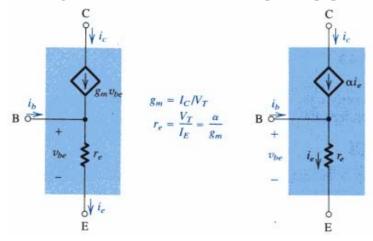

Simplified DC model for *npn* transistor in saturation mode:



Simplified DC model for *pnp* transistor in active mode:

Simplified DC model for *pnp* transistor in saturation mode:




Small signal AC model for BJT (both *npn* and *pnp*) in active mode (Hybrid- π model):

Constraint on v_{be} for BJT small signal models to be valid: $v_{be} <\!\!< V_T$ (thermal voltage)

Hybrid- π model including r_0 :

Small signal AC model for BJT (both *npn* and *pnp*) in active mode (T-model):

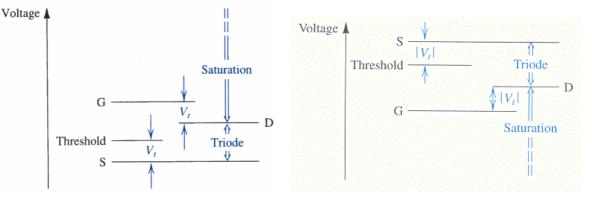
Region	Cutoff	Triode	Saturation	
Conditions	$v_{GS} < V_t$	$v_{GS} \ge V_t$		
Conditions		$v_{DS} < v_{GS} - V_t$	$v_{DS} \ge v_{GS} - V_t$	
I-V relation	<i>i</i> _D = 0	$i_{D} = K'_{n} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$	$i_{D} = \frac{1}{2} K'_{n} \frac{W}{L} (v_{GS} - V_{t})^{2}$	

n-channel MOSFET I-V equations in different modes:

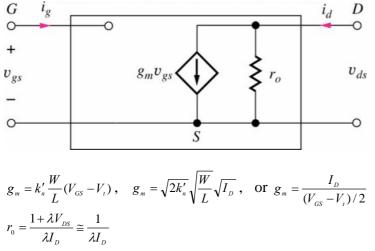
where $K_n = \mu_n C_{ax}$, V_t is the threshold voltage (sometimes denoted as V_{TN} for nmos).

Saturation mode equation including the channel length modulation effect:

$$i_D = \frac{K_n}{2} \frac{W}{L} \left(v_{GS} - V_t \right)^2 \left(1 + \lambda v_{DS} \right)$$


p-channel MOSFET I-V equations in different modes:

Cutoff	- Triode/Linear	Saturation				
$i_D = 0$	$i_D = K_p \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$	$i_D = \frac{1}{2} K_p (v_{GS} - V_t)^2$				
where $K_n = K_n' \frac{W}{T}$, $K_n' = \mu_n C_{ar}$						


where $K_p = K_p \frac{W}{L}$, $K_p = \mu_p C_{ox}$

 V_t , v_{GS} and v_{DS} are negative for pmos.

Charts helping you to judge the operational mode of nmos (left) and pmos (right):

MOSFET small signal model (for both nmos and pmos):

Constraint on v_{gs} for the small signal model to be valid: $v_{gs} \ll 2(V_{GS} - V_t)$, or $v_{gs} \ll 0.2(V_{GS} - V_t)$.