Important formulae and device models for you to prepare for ELE2110A test 2

Prof. KP Pun, 13 March 2008

BJT collector current in active mode: $i_{C}=I_{s} e^{v_{S E} / V_{T}}$
BJT collector current in active mode (including Early effect): $i_{C}=I_{s}{ }^{v_{\text {vE }} / V_{T}}\left(1+\frac{v_{C E}}{V_{A}}\right)$
Relationship between base and collector currents for BJT in active mode: $i_{B}=\frac{i_{c}}{\beta}$
Relationship between emitter and collector currents for BJT in active mode: $i_{C}=\alpha i_{E}$
Relationship between α and β : $\alpha=\frac{\beta}{1+\beta}$
Single stage BJT amplifier properties:

	$\mathrm{C}-\mathrm{E}$ $\left(\mathrm{R}_{\mathrm{E}}=0\right)$	Emitter Degenerated $\mathrm{C}-\mathrm{E}$	$\mathrm{C}-\mathrm{C}$	C-B
Terminal Voltage Gain	Inverting \& large	 moderate	1	 Large
Input Resistance	Moderate	Large	Large	Low
Output Resistance	Moderate	Large	Low	Large
Input Voltage Range	Small	Moderate	Large	Moderate
Terminal Current Gain	Inverting \& Large	Inverting \& Large	Non- Large	1

Simplified DC model for $n p n$ transistor in active mode:

(β_{F} is another notation for β).
Simplified DC model for npn transistor in saturation mode:

Simplified DC model for $p n p$ transistor in active mode:

Simplified DC model for pnp transistor in saturation mode:

$$
\begin{aligned}
& V_{E B} \cong 0.7 \mathrm{~V} \\
& V_{E C} \cong 0.2 \mathrm{~V}
\end{aligned}
$$

Small signal AC model for BJT (both npn and pnp) in active mode (Hybrid- π model):

Constraint on V_{be} for BJT small signal models to be valid: $\mathrm{V}_{\mathrm{be}} \ll \mathrm{V}_{\mathrm{T}}$ (thermal voltage)

Hybrid- $\boldsymbol{\pi}$ model including $\mathbf{r}_{\mathbf{0}}$:

$$
\begin{aligned}
& g_{m}=\frac{I_{C}}{V_{T}}, \\
& r_{\pi}=\frac{V_{T}}{I_{B}}, \\
& r_{o}=\frac{V_{A}+V_{C B}}{I_{C}} \approx \frac{V_{A}}{I_{C}}
\end{aligned}
$$

Small signal AC model for BJT (both $n p n$ and $p n p$) in active mode (T-model):

n-channel MOSFET I-V equations in different modes:

Region	Cutoff	Triode	Saturation
Conditions	$v_{G S}<V_{t}$	$v_{G S} \geq V_{t}$	
		$v_{D S}<v_{G S}-V_{t}$	$v_{D S} \geq v_{G S}-V_{t}$
I-V relation	$i_{D}=0$	$i_{D}=K^{\prime}{ }_{n} \frac{W}{L}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$	$i_{D}=\frac{1}{2} K_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}$

where $K_{n}{ }^{\prime}=\mu_{n} C_{o x}, \mathrm{~V}_{\mathrm{t}}$ is the threshold voltage (sometimes denoted as V_{TN} for nmos).
Saturation mode equation including the channel length modulation effect:
$i_{D}=\frac{K_{n}}{2} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}\left(1+\lambda v_{D S}\right)$
p-channel MOSFET I-V equations in different modes:

Cutoff	Triode/Linear	Saturation
$i_{D}=0$	$i_{D}=K_{p}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$	$i_{D}=\frac{1}{2} K_{p}\left(v_{G S}-V_{t}\right)^{2}$

where $K_{p}=K_{p}{ }^{\prime} \frac{W}{L}, \quad K_{p}{ }^{\prime}=\mu_{p} C_{o x}$
$\mathrm{V}_{\mathrm{t}}, \mathrm{v}_{\mathrm{GS}}$ and v_{DS} are negative for pmos.

Charts helping you to judge the operational mode of nmos (left) and pmos (right):

MOSFET small signal model (for both nmos and pmos):

$g_{m}=k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right), \quad g_{m}=\sqrt{2 k_{n}^{\prime}} \sqrt{\frac{W}{L}} \sqrt{I_{D}}, \quad$ or $g_{m}=\frac{I_{D}}{\left(V_{G S}-V_{t}\right) / 2}$
$r_{0}=\frac{1+\lambda V_{D S}}{\lambda I_{D}} \cong \frac{1}{\lambda I_{D}}$
Constraint on V_{gs} for the small signal model to be valid: $v_{g s} \ll 2\left(V_{G S}-V_{t}\right)$, or $\mathrm{V}_{\mathrm{gs}}<0.2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$.

