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LowLow Passband Passband Sensitivity Sensitivity
FIR Digital FilterFIR Digital Filter

• We consider here the Type 1 filter as it is
the most general linear-phase filter and can
realize any type of frequency response

• The frequency response of a Type 1 FIR
transfer function H(z) of order N can be
expressed as

where          , a real function of ω, is its
amplitude response
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• If H(z) is a BR function, then
• Its delay-complementary transfer function

G(z) defined by

has a frequency response given by

where                             is its amplitude
response
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• Amplitude responses of a typical delay-
complementary FIR filter pair are shown
below
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• It follows from the plots of the amplitude
responses that at            , where                 

     has double zeros
• Thus, G(z) can be expressed as
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• A delay-complementary realization of H(z)
based on                                     is shown
below

•            consists of L 4-th order FIR sections
with the k-th section having a transfer
function
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• If the multiplier coefficient               of the
k-th section is quantized, its zeros are still
double and remain on the unit circle

• Thus, quantization of the coefficients of
does not change the sign of the amplitude
response          , and in the passband of H(z),
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• In addition,            has no zeros on the unit
circle, and quantization of its coefficients
also does not affect the sign of

• Hence,            continues to remain bounded
above by unity

•             The realization of H(z) as indicated
remains structurally BR or structurally
passive with regard to all coefficients,
resulting in a low passband sensitivity
realization
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• Example - The filter specifications are
length 13 with a normalized passband edge
at 0.5 and a normalized stopband edge  at
0.6 with equal weights to passband and
stopband ripples

• Using the M-file remez we determine the
transfer function of the lowpass filter H(z)
and form its delay-complementary filter
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• G(z) has 6 zeros on the unit circle: 2 zeros
at z = 1, a pair of complex conjugate zeros
at
and a pair of complex conjugate zeros at

• These unit circle zeros constitute
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• By factoring out            from G(z) we get

• Next we quantize the coefficients of
and             by rounding the fractional part
to 2 decimal digits
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• Finally, from G(z) with quantized
coefficients, the delay-complementary
transfer function H(z) is determined
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First-Order Error-FeedbackFirst-Order Error-Feedback
StructureStructure

• Consider the scaled first-order section

• We assume that all multiplier coefficients
are signed (b + 1)-bit fractions

• The quantization error signal is given by
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• The first-order section is modified by
feeding back the error signal e[n] to the
system through a delay and a multiplier β as
shown below
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• In practice, β is chosen to be a simple
integer or a power-of-2 fraction, such as

,       , or           so that the multiplication
can be performed using a shift operation
and will not introduce an additional
quantization error

1± 2± 5.0±
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• Analyzing the error-feedback structure we
arrive at its transfer function

• The noise transfer function G(z) with the
error feedback, with y[n] as the output is
given by

1
0)( 1)(

)()( −
= −
==

z
K

zX
zYzH

zE α

1

1

0)( 1
1

)(
)()( −

−

= −
+==

z
z

zE
zYzG

zX α
β



Copyright © 2001, S. K. Mitra
16

First-Order Error-FeedbackFirst-Order Error-Feedback
StructureStructure

• The noise transfer function without the error
feedback (β = 0) is given by

• The output noise variance of the error-
feedback structure is given by

where       is the variance of e[n]

10 1
1)( −−

=
z

zG
α

2
2

2
2

1
21

oσα
βαβσγ 








−

++=
2
oσ



Copyright © 2001, S. K. Mitra
17

First-Order Error-FeedbackFirst-Order Error-Feedback
StructureStructure

•        is a minimum when
• However, in practice
• Hence               will introduce an additional

quantization noise source, making the
analysis resulting in the expression for
invalid

• Thus, β should be chosen as an integer with
a value close to that of

2
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• For              , β = 0, implying no error
feedback

• However, in this case, the pole of H(z) is far
from the unit circle, and as a result, the
output noise variance        is not that high

• For               , choose
• Using this value of β we get
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• The output noise variance with β = 0 is

• Thus, error feedback has increased the SNR
by a factor of
                                                dB

• This increase in SNR is quite significant if
the pole is closer to the unit circle
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• For example if                , the improvement
is about 17 dB, which is  equivalent to
about 3 bits of increased accuracy compared
to the case without error feedback

• Additional hardware requirements for the
error-feedback structure are two new adders
and an additional storage register

99.0=α
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• The noise transfer function for the error-
feedback structure can be expressed as

where            is the noise transfer function
without error feedback

•               The error-feedback circuit is
shaping the error spectrum by modifying
the input quantization noise E(z) to

)()1()( 0
1 zGzzG −β+=

)(0 zG

)()1()( 1 zEzzEs
−β+=



Copyright © 2001, S. K. Mitra
22

First-Order Error-FeedbackFirst-Order Error-Feedback
StructureStructure

• The output noise is generated by passing
through the usual noise transfer function

• To illustrate the effect of noise spectrum
shaping, consider the case of a narrow-band
lowpass first-order filter with

• We choose              and as a result
has a zero at z = 1 (ω = 0)
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• The power spectral density of the unshaped
quantization noise E(z) is      , a constant

• The power spectral density of the shaped
quantization noise           is

2
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• The noise shaping redistributes the noise so
as to move it mostly into the stopband of the
lowpass filter, thus reducing the noise
variance

• Because of the noise redistribution caused
by the error-feedback, this approach has
also been called the error spectrum
shaping method
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• The noise transfer function is given by

• The output round-off noise variance for
-scaling is given by

• A choice of              and               makes
        , yielding               , an apparent

optimal solution
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• However, this choice for the multiplier
coefficients in the error-feedback path
introduces additional quantization noise
sources that invalidates the expression for

• A more attractive solution is to make        
and        integers with values close to
and      , respectively
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• For example, for a narrow-band lowpass
transfer function, the poles are close to the
unit circle and to the real axis, i.e.,
and

• Then,       is close to       and      is close to 1
• In this case, choose              and
• Then
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• For a very narrowband lowpass filter with r
= 0.995,     = 0.07π, and b = 16, the second-
order error-feedback structure has an SNR
that is approximately 25 dB higher than that
without the error feedback

• The second-order error-feedback structure
also provides a noise shaping

θ
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• The error-feedback circuit shapes the error
spectrum by modifying the input quantization
noise E(z) to

• The output noise is generated by passing
   through the usual noise transfer function
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• The power spectral density of the shaped
noise source            is

• The power spectral density of the unshaped
noise source is 2oσ

24 )2/(sin16 oσω)(zEs

0 0.2 0.4 0.6 0.8 1
0

5

10

15

ω/pi

N
oi

se
 p

ow
er

Unshaped

Shaped



Copyright © 2001, S. K. Mitra
32

Limit Cycles in IIR DigitalLimit Cycles in IIR Digital
FiltersFilters

• So far we have treated the analysis of finite
wordlength effects using a linear model of
the system

• A practical digital filter is a nonlinear system
caused by the quantization of the arithmetic
operations

• Such nonlinearities may cause an IIR filter,
which is stable under infinite precision, to
exhibit an unstable behavior under finite
precision arithmetic for specific input signals
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• This type of instability usually results in an
oscillatory periodic output called a limit
cycle

• The system remains in this condition until
an input of sufficiently large amplitude is
applied to move the system into a more
conventional operation
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• Limit cycles occur in IIR filters due to the
presence of feedback

• Such oscillations are absent in FIR filters as
they do not have any feedback path

• There are two types of limit cycles
(1) Granular limit cycle is usually of low
amplitude
(2) Overflow limit cycle has large
amplitudes
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• Two types of granular limit cycles have
been observed in IIR digital filters:
(1) Inaccessible limit cycle - can appear
only if the initial conditions of the digital
filter at the time of starting pertain to that
limit cycle
(2) Accessible limit cycle - can appear by
starting the digital filter with initial
conditions not pertaining to the limit cycle
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• Consider the first-order IIR filter as shown

below

• Assume the quantization operation to be
rounding and the filter to be implemented
with a signed 6-bit fractional arithmetic

• The nonlinear difference equation
characterizing the filter is given by
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• For x[n] = 0.04δ[n],                , and α = 0.6,

the output of the filter is as shown below

• The limit cycle generated has a period of 1
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• For x[n] = 0.04δ[n],                , and

the output of the filter is as shown below

• The limit cycle generated has a period of 2
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Overflow Limit CyclesOverflow Limit Cycles
• Limit-cycle-like oscillations can also result

from overflow in digital filters implemented
with finite precision arithmetic

• The amplitude of the overflow oscillations
can cover the whole dynamic range of the
register experiencing the overflow

• Overflow limit cycles are thus much more
serious in nature than the granular limit
cycles
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• Consider the causal all-pole second-order

IIR digital filter shown below

• Assume implementation using sign-
magnitude 4-bit arithmetic with a rounding
of the sum of products by a single quantizer
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• Let                     ,                   ,

and
• Consider x[n] = 0 for
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• The second-order direct form IIR structure

with multiplier coefficients      and
remains stable if              and

• However, the structure can still get into a
zero-input overflow oscillation mode for a
large range of values of the filter constants
satisfying the stability constraint when
implemented using two’s-complement
arithmetic with rounding

12 <α 21 1 α+<α
1α 2α
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• It has been shown that overflow limit cycles

under zero-input cannot occur if the filter
coefficients lie in the shaded region inside
the stability triangle shown below
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Limit Cycle Free StructuresLimit Cycle Free Structures
• Conditions for a digital filter structure to not

support limit cycles have been derived in
terms of its state transition matrix

• For a second-order causal LTI digital filter,
the state-space representation relating the
output y[n] to the input x[n] is given by
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• Let

• The state-space description is then compactly
written as

• A is called the state-transition matrix
• s[n] is called the state-vector
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• The quantization errors caused by the

quantization of the state-transition equation

go through the feedback loop and are
responsible for the generation of limit cycles

• Assume               and               are quantized
• Delayed versions of these quantized signals

are          and

][][]1[ nxnn BsAs +=+
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• A quantizer is defined to be passive if

                                      for all x
• If x is inside the dynamic range of the

system, then for magnitude truncation
above inequality holds

• If x is outside the dynamic range, for
example by overflow, it must be brought
back to the range by following the schemes
discussed next

,)( xx ≤Q
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Handling OverflowHandling Overflow
• If η, the sum of two fixed-point fractions,

exceeds the dynamic range           , it is
substituted with a number     which is within
the range using one of the two following
schemes
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• Thus, magnitude truncation followed by one
of the two overflow handling schemes is
again a passive quantizer

• A digital filter structure with a state
transition matrix satisfying

• has been called a normal form structure

TT AAAA =
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• A normal form structure with passive
quantizers does not support zero-input limit
cycles of either type

• The state transition matrix A satisfying the
condition                       and              is called
a normal matrix

TT AAAA = 12 <A
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• Example - Consider the digital filter

structure shown below

• Analysis yields
][][][]1[ 211 nxcnscdnscns +−=+
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Limit Cycle Free StructuresLimit Cycle Free Structures
• The state transition matrix is given by

• The transfer function of the structure is
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Limit Cycle Free StructuresLimit Cycle Free Structures
• Comparing the denominator of H(z) with

that of a second-order IIR transfer function
with poles at                 (with r < 1 for
stability) we obtain                   and

• Thus

• Note:                                and
•         The filter is a normal form structure
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