Low Passband Sensitivity
FIR Digital Filter

* \We consider herethe Type 1 filter asitis
the most general linear-phase filter and can
realize any type of freguency response

* Thefrequency responseof aType 1 FIR
transfer function H(z) of order N can be
expressed as

H (ejﬁ)) _ e—j(DN /ZI:I’ ((D)
where H (»), area function of o, isits
amplitude response
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Low Passbhand Sensitivity
FIR Digital Filter

e If H(2) isaBR function, then H(w) <1

* |ts delay-complementary transfer function
G(2) defined by

G(2)=zN?2-H(2)
has a frequency response given by
G(ejm) _ e—jooN /2[1_ H (0)] = e_j(DN/ZG((D)

where G(w) =1- H () isitsamplitude
response
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Low Passband Sensitivity

FIR Digital Filter

o Amplitude responses of atypical delay-
complementary FIR filter pair are shown

below
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Low Passbhand Sensitivity
FIR Digital Filter

* |t followsfrom the plots of the amplitude
responses that at o = oy, where|H (e!®«)| =1
G(w) has double zeros

e Thus, G(2) can be expressed as

L
G(2) =G4 (2) [T (1- 2coswyz L+ Z77%)?
k=1
=G,(2)Gy(2)
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Low Passbhand Sensitivity
FIR Digital Filter

* A delay-complementary realization of H(z)
based on H(z) =z N/2-G(z) isshown

bel ow
T G,(2) — G,(2) _’? g
+
—N/2

g

* G,(2) consists of L 4-th order FIR sections
with the k-th section having a transfer

function (1- 2cosmyz 1+ 27 %)?
z Copyright © 2001, S. K. Mitra



Low Passband Sensitivity
FIR Digital Filter

e |f the multiplier coefficient 2coswmy of the
k-th section Is quantized, its zeros are still
double and remain on the unit circle

» Thus, quantization of the coefficients of G,(2)
does not change the sign of the amplitude
response G(w), and in the passband of H(2),
G(w) >0
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Low Passband Sensitivity
FIR Digital Filter

* Inaddition, G,(z) has no zeros on the unit
circle, and quantization of its coefficients
also does not affect the sign of G(w)

« Hence, H(w) continues to remain bounded
above by unity

B The redlization of H(2) asindicated
remains structurally BR or structurally
passive with regard to all coefficients,
resulting in alow passband sensitivity
realization
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Low Passband Sensitivity
FIR Digital Filter

 Example - Thefilter specifications are
length 13 with a normalized passband edge
at 0.5 and anormalized stopband edge at
0.6 with equal weights to passband and
stopband ripples

o Using the M-filer enez we determine the
transfer function of the lowpass filter H(2)
and form its delay-complementary filter

G(2)=z°—H(2)
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Low Passbhand Sensitivity
FIR Digital Filter

e 5(2) has 6 zeros on the unit circle: 2 zeros
at z=1, apair of complex conjugate zeros
al z=-0.26463064626566 + | 0.9643498437
and a pair of complex conjugate zeros at

2 =—0.27683551142484 + j0.96091732945
* These unit circle zeros constitute
Gy (2) = (1- 21)?(1- 0529261297 1 + 72)
x (L— 0.55367102284977 1 + 77%)
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Low Passbhand Sensitivity
FIR Digital Filter

By factoring out G,(z) from G(z) we get
G,(2) = 0.04107997 + 0.0519715447

—0.12094731168z % — 0.307045622247 3
+0.1209473116872 % —0.0.0519715447°

+0.041079971956192 °

 Next we quantize the coefficients of G, (2)
and Gy(z) by rounding the fractional part

to 2 decimal digits

10 _ _
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Low Passband Sensitivity
FIR Digital Filter

e Finally, from G(z) with quantized
coefficients, the delay-complementary

transfer function H(z) is determined
original - solid line, quantized - dashed line
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First-Order Error-Feedback
Structure

e Consder the scaled first-order section

X[} D3 9 |+ yinl
H

HOL -«

 We assume that all multiplier coefficients
are signed (b + 1)-bit fractions

e The quantization error signal i1s given by

e{n] =y[n] -vn]

12 _ _
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First-Order Error-Feedback

Structure

o Thefirst-order section is modified by
feeding back the error signal n] to the
system through a delay and a multiplier 3 as
shown below
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First-Order Error-Feedback
Structure

 In practice, B Ischosento beasimple
Integer or a power-of-2 fraction, such as
+1, £2, 0or +£0.5 so that the multiplication
can be performed using a shift operation
and will not introduce an additional
guantization error
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First-Order Error-Feedback

Structure

* Analyzing the error-feedback structure we
arrive at its transfer function

H(z):@ K

X(D g 1-oz
e The noise transfer function G(z) with the
error feedback, with y[n] as the output is
given by

G(2) Y@ 1+ pz

E(2) x(p0 1-az'

Copyright © 2001, S. K. Mitra
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First-Order Error-Feedback

Structure

e The noise transfer function without the error
feedback (B = 0) is given by
1
Gy(2) =
0(2) A
 The output noise variance of the error-
feedback structure is given by

02:/14- 2&ﬂ+ﬂ2 0_2
N
where o§ I1sthe variance of g nj

1

16 _ _
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First-Order Error-Feedback
Structure

o2 isaminimum when g = -«

However, In practice |a|<1

Hence f =—a will introduce an additional

guantization noise source, making the

analysis resulting in the expression for o2

invalid

Thus, B should be chosen as an integer with

avaluecloseto that of —«
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First-Order Error-Feedback
Structure

e For|x|< 0.5, =0, implying no error
feedback
 However, in this case, the pole of H(2) isfar

from the unit circle, and as aresult, the

output noise variance o is not that high

e For |x¢|>0.5, choose = (1) sgn(«)
e Using thisvalue of 3 we get

2 2 2
7_1+|05|0O

O
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First-Order Error-Feedback
Structure

e The output noise variancewithp =01s

2 1
Oo

O. =
/4 1—0{2

e Thus, error feedback has increased the SNR
by afactor of
~10logyo[2(1— )] dB
* Thisincreasein SNR is quite significant if
the pole is closer to the unit circle

19 _ _
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First-Order Error-Feedback
Structure

e For exampleif |o = 0.99, the improvement
Isabout 17 dB, which Is equivalent to
about 3 bits of Increased accuracy compared
to the case without error feedback

« Additional hardware requirements for the
error-feedback structure are two new adders
and an additional storage register
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First-Order Error-Feedback
Structure

e The noisetransfer function for the error-
feedback structure can be expressed as
G(2)=(1+Bz ")Gp(2)
where G,(z) Isthe noise transfer function
without error feedback

- mmm) The error-feedback circuit is
shaping the error spectrum by modifying
the Input quantization noise E(2) to

Es(2) =(1+pz )E(2)
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First-Order Error-Feedback
Structure
 The output noise is generated by passing E¢(z)
through the usual noise transfer function Gy(z2)

o Toillustrate the effect of noise spectrum
shaping, consider the case of a narrow-band
lowpass first-order filter with oo —> 1

 Wechoose f=-1 andasaresult E;(2)
hasazeroatz=1 (o =0)

22 _ _
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First-Order Error-Feedback
Structure

e The power spectral density of the unshaped

guantization noise E(2) Is cg, a constant

o The power spectral density of the shaped
guantization noise E¢(2) is4sin ((o/ 2)c5O

4

Noise power
N w

=

o

0O 02 04 06 08 1
o/pi

23 _ _
Copyright © 2001, S. K. Mitra



24

First-Order Error-Feedback
Structure

e The noise shaping redistributes the noise so
as to move it mostly into the stopband of the
lowpass filter, thus reducing the noise
variance

e Because of the noise redistribution caused
by the error-feedback, this approach has
also been called the error spectrum
shaping method
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Second-Order Error-Feedback

Structure

|
B, 3
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Second-Order Error-Feedback
Structure

e The noise transfer functlon IS g|\2/en by

1+ B1Z T+ Bz

G(Z) _ ﬁl S BZ -

1+ 01z "+ anz

* The output round-off noise variance for
L, -scaling is given by
67 =(Gl,)*c6

e A choice of Bl oq and [32 oo makes

G|, =1, yielding o2 = 5, an apparent
opitl mal sol ution

26 _ _
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Second-Order Error-Feedback
Structure

 However, this choice for the multiplier
coefficients in the error-feedback path
Introduces additional quantization noise
sources that invalidates the expression for

o7

e A more attractive solution is to make 31
and 3o Integerswith values closeto a1

and o9, respectively
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Second-Order Error-Feedback
Structure

* For example, for a narrow-band lowpass
transfer function, the poles are close to the
unit circle and to thered axis, i.e,r =1
and 6~0

 Then, aq Iscloseto —2 and agiscloseto 1
* Inthiscase, choosepy=-2 and P2 =1
* Then

-1 —2
G(2) = 1-2z ~+2z

1

1+ o9z ~+ oczz_2

28 _ _
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Second-Order Error-Feedback
Structure

e For avery narrowband lowpass filter with r
=0.995, 8 = 0.07x, and b = 16, the second-
order error-feedback structure has an SNR
that is approximately 25 dB higher than that
without the error feedback

e The second-order error-feedback structure
also provides a noise shaping
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Second-Order Error-Feedback
Structure

* The error-feedback circuit shapes the error
spectrum by modifying the input quantization
noise E(2) to

Es(2) = (1-Z)°E(2)

e The output noise is generated by passing

E.(2) through the usual noise transfer function

1
Go(2) = =
1+ 14

+ OL22_2

30 _ _
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Second-Order Error-Feedback
Structure

e The power spectral density of the shaped
noise source Eq(2) is16sin?(w/2)c3

e The power spectral density of the unshaped
noise source is 64

15/

=
o

Noise power

ol

Unshaped

0.2 04 0.6 0.8 1
31 o/pi
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Limit Cycles in |IR Digital
Filters

o S0 far we have treated the analysis of finite
wordlength effects using alinear model of
the system

o A practical digital filter isanonlinear system

caused by the quantization of the arithmetic
operations

 Such nonlinearities may cause an | IR filter,

which Is stable under infinite precision, to
exhibit an unstable behavior under finite
precision arithmetic for specific input signals
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Limit Cycles in |IR Digital
Filters

o Thistype of instability usually resultsin an
oscillatory periodic output called alimit
cycle

e The system remainsin this condition until
an input of sufficiently large amplitudeis
applied to move the system into a more
conventional operation
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Limit Cycles in |IR Digital

Filters
Limit cycles occur in |IR filters due to the
presence of feedback

Such oscillations are absent In FIR filters as
they do not have any feedback path

There are two types of limit cycles

(1) Granular limit cycleisusually of low
amplitude

(2) Overflow limit cycle haslarge
amplitudes
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Limit Cycles in |IR Digital

Filters
wo types of granular limit cycles have

been observed in IR digital filters:

(1) Inaccessible limit cycle - can appear
only if theinitial conditions of the digital
filter a the time of starting pertain to that
limit cycle

(2) Accessible limit cycle - can appear by
starting the digital filter with initial
conditions not pertaining to the limit cycle
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Granular Limit Cycles
e Congder thefirst-order IR filter as shown

below ~G o
)

Z—l

%
o Assume the quantization operation to be

rounding and the filter to be implemented
with a signed 6-bit fractional arithmetic

* The nonlinear difference equation
characterizing the filter is given by

. 9n] = Qla- 9{n—1)+ X[
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Granular Limit Cycles

e For x[n] =0.049[n], ¥y[-1] =0, and a = 0.6,
the output of the filter I1s as shown below

a=0.6

0.04%
POOOLOOOLOOPOOOOOOOOY(

o
Q
@

Amplitude
o
o
N

o
o
=

20

10 15

Timeindex n

e Thelimit cycle generated has a period of 1
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Granular Limit Cycles

e For x[n] =0.049[n], y[-1] =0, and ¢ =-0.6
the output of the filter i1s as shown below

=-0.6

< 11110110
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Anplitude
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o
o
o
o
ST

10

-0.04 :
0 5
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e Thelimit cycle generated has a period of 2

Copyright © 2001, S. K. Mitra
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Overflow Limit Cycles

o Limit-cycle-like oscillations can also result
from overflow in digital filters implemented
with finite precision arithmetic

e The amplitude of the overflow oscillations

can cover the whole dynamic range of the
register experiencing the overflow

e Overflow limit cycles are thus much more
serious in nature than the granular limit
cycles
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Overflow Limit Cycles

nole second-order
nelow

e Consder the causal all-

IR digital filter shown

X[ n] —>

9

2—1

]

Z—l

> y[n]

o Assume implementation using sign-
magnitude 4-bit arithmetic with a rounding
of the sum of products by a single quantizer

40
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Overflow Limit Cycles
e Let aq=-0.875, a, =0.875, §[-1] =-0.625

and y[-2] =-0.125
e Consider x[n] =0for n=0

Amplitude

o, = -0.875 o, = 0.875

A ddddd
4 o él él él él ;
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Overflow Limit Cycles

he second-order direct form |IR structure
with multiplier coefficientsaq and oo
remains stable if ‘Otz‘ <1 and ‘OL]_‘ <l+ao

However, the structure can still get into a
zero-input overflow oscillation mode for a
large range of values of the filter constants
satisfying the stability constraint when
Implemented using two’ s-complement
arithmetic with rounding
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Overflow Limit Cycles

It has been shown that overflow limit cycles
under zero-input cannot occur if the filter
coefficients lie in the shaded region inside
the stability triangle shown below

O

D N
* _1\/1 2

-1
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Limit Cycle Free Structures

e Conditionsfor adigital filter structure to not
support [imit cycles have been derived in
terms of Its state transition matrix

e [or asecond-order causal L

| digital filter,

the state-space representation relating the

output y[n] to the input X

Sin+1 &1

yinj=[c ¢}

2
SN+l | |3y axn.

n

SN
S[n

n

s[nl] (b

n] isgiven by
sn]| [b

+| 0 (Xn]

+d X[n]
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Limit Cycle Free Structures

Let  gn]=[sg[n

1 o |
A_| %1 G

dp1  dyo |

SZ[T]]T_
B|X
b,

,C=[gq ]

The state-space descri pfi on is then compactly

written as

dn+1]=Agn]+BXn]
y[n]=Cqn]+dxn]

A Iscadled the state-transition matrix
g n] is called the state-vector
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Limit Cycle Free Structures

e The quantization errors caused by the
guantization of the state-transition eguation

dn+1=Agn]+BXn]

go through the feedback loop and are
responsible for the generation of limit cycles

 Assume sn+1] and sy[n+1] are quantized

* Delayed versions of these quantized signals
are s[n] and sy[N]

46 _ _
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Limit Cycle Free Structures

o A guantizer is defined to be passive If
9(x) <X, foralx

 If xIsinside the dynamic range of the
system, then for magnitude truncation
above inequality holds

 If XxIsoutside the dynamic range, for
example by overflow, it must be brought
back to the range by following the schemes
discussed next
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Handling Overflow

 If 1, the sum of two fixed-point fractions,
exceeds the dynamic range[-1, 1), it IS
substituted with a number £ which iswithin
the range using one of the two following

schemes
& &

14— 14

— 1+

48 Saturation overflow Two's-complement overflow
Copyright © 2001, S. K. Mitra



Limit Cycle Free Structures

* Thus, magnitude truncation followed by one
of the two overflow handling schemesis
agaln a passive quantizer

o A diqgital filter structure with a state
transition matrix satisfying

ATA=AAT
* hasbeen called anormal form structure

49 _ _
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Limit Cycle Free Structures

* A normal form structure with passive

guantizers does not support zero-input limit
cycles of elther type

e The state transition matrix A satisfying the
condition A'A =AA" and |A|,, <1iscalled
anormal matrix

o0 _ _
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Limit Cycle Free Structures

 Example - Consider the digital filter
structure shown below

X[ n] —>@—>%->—>DC_> Zli[{n_],bd_.?% Z—lizo[—nl y[N]
_ \'<

 Analysisyields

sn+1] = csn] - cdsgn] + cx{n]
s,[n+1] = cds[n] + csn)

ol
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Limit Cycle Free Structures
e The state transition matrix is given by

c -cd
cd C

A =

e Thetransfer function of the structureis

c?dz 2
1-2cz 1+ c?(1+d?)z 2

H(2) =

52 _ _
Copyright © 2001, S. K. Mitra



53

Limit Cycle Free Structures

Comparing the denominator of H(z) with
that of a second-order |IR transfer function
with polesat z = ret 19 (withr < 1for
stability) we obtain c=rcos® and d =tan©

Thus ' cosO

' rsin®

A =

—rsind|

r cosO |

Note: ATA=AAT =r?l and |A|,=r <1
=) | he filter iIsanormal form structure
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