Chapter 4

4.1 Let $\phi(t)$ be an arbitrary continuous-time function with a CTFT $\Phi(j \Omega)$, where $\Phi(j \Omega)=\int_{-\infty}^{\infty} \phi(t) e^{-j \Omega t} d t$. Let $\tilde{\phi}_{T}(t)=\sum_{n=-\infty}^{\infty} \phi(t+n T)$ denote the periodic continuoustime function with a period T obtained by a periodic extension of $\phi(t)$. Note that $\tilde{\phi}_{T}(t)$ is also given by the convolution of $\phi(t)$ with the periodic impulse train

$$
p(t)=\sum_{n=-\infty}^{\infty} \delta(t+n T) \text {, i.e., } \tilde{\phi}_{T}(t)=\int_{-\infty}^{\infty} \phi(\tau) p(t-\tau) d \tau .
$$

Tthe CTFT of $\tilde{\phi}_{T}(t)$ is then given by $\mathcal{F}\left\{\tilde{\phi}_{T}(t)\right\}=\Phi(j \Omega) \cdot \mathcal{F}\{p(t)\}$

$$
\begin{equation*}
=\Phi(j \Omega) \cdot \frac{2 \pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(j\left(\Omega-n \Omega_{T}\right)\right)=\sum_{n=-\infty}^{\infty} \frac{2 \pi}{T} \Phi\left(j n \Omega_{T}\right) \delta\left(j\left(\Omega-n \Omega_{T}\right)\right) \tag{4-1}
\end{equation*}
$$

where $\Omega_{T}=\frac{2 \pi}{T}$.
Now, the Fourier series expansion of $\tilde{\phi}_{T}(t)=\sum_{n=-\infty}^{\infty} \phi(t+n T)$ is given by
$\tilde{\phi}_{T}(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j n \Omega_{T} t}$. A CTFT of both sides of this equation is then
$\mathcal{F}\left\{\tilde{\phi}_{T}(t)\right\}=\sum_{n=-\infty}^{\infty} a_{n} \cdot 2 \pi \delta\left(j\left(\Omega-n \Omega_{T}\right)\right)$.
Comparing Eqs. (4-1) and (4-2) we arrive at $a_{n}=\frac{1}{T} \Phi\left(j n \Omega_{T}\right)$. Substituting this expression in the Fourier expansion of $\tilde{\phi}_{T}(t)$ we therefore arrive at the Poisson's sum formula $\tilde{\phi}_{T}(t)=\sum_{n=-\infty}^{\infty} \phi(t+n T)=\frac{1}{T} \sum_{n=-\infty}^{\infty} \Phi\left(j n \Omega_{T}\right) e^{j n \Omega_{T} t}$.
4.2 Consider the continuous-time signal $g_{a}(t)=\sin \left(\Omega_{m} t\right)$ which is bandlimited to Ω_{m}. If we sample $g_{a}(t)$ at a rate $\Omega_{T}=2 \Omega_{m}$ starting at $t=0$, then all its samples are zero. Hence, $g_{a}(t)$ cannot be recovered from its samples obtained by sampling it at the Nyquist rate $\Omega_{T}=2 \Omega_{m}$. As a result, $g_{a}(t)=\sin \left(\Omega_{m} t\right)$ must be sampled at a rate $\Omega_{T}>2 \Omega_{m}$ to recover it fully from its samples.
4.3 (a) Now, the CTFT of $y_{1}(t)$ is given by $Y_{1}(j \Omega)=\frac{1}{2 \pi} G_{a}(j \Omega) \circledast G_{a}(j \Omega)$ where $G_{a}(j \Omega)$ denotes the CTFT of $g_{a}(t)$ and \circledast denotes the frequency-domain convolution. The highest frequency present in $y_{1}(t)$ is therefore twice that of $g_{a}(t)$ and hence, the Nyquist frequency of $y_{1}(t)$ is $2 \Omega_{m}$.
(b) The CTFT of $y_{2}(t)$ is given by $Y_{2}(j \Omega)=\int_{-\infty}^{\infty} g_{a}\left(\frac{t}{3}\right) e^{-j \Omega t} d t$ $=3 \int_{-\infty}^{\infty} g_{a}(\tau) e^{-j 3 \Omega \tau} d \tau=3 G_{a}(j 3 \Omega)$. The highest frequency present in $y_{2}(t)$ is therefore one-third of that of $g_{a}(t)$ and hence, the Nyquist frequency of $y_{2}(t)$ is $\Omega_{m} / 3$.
(c) The CTFT of $y_{3}(t)$ is given by $Y_{3}(j \Omega)=\int_{-\infty}^{\infty} g_{a}(3 t) e^{-j \Omega t} d t$ $=\frac{1}{3} \int_{-\infty}^{\infty} g_{a}(\tau) e^{-j \Omega \tau / 3} d \tau=\frac{1}{3} G_{a}\left(j \frac{\Omega}{3}\right)$. The highest frequency present in $y_{3}(t)$ is therefore three times of that of $g_{a}(t)$ and hence, the Nyquist frequency of $y_{3}(t)$ is $3 \Omega_{m}$.
(d) The CTFT of $y_{4}(t)$ is given by

$$
\begin{aligned}
& Y_{4}(j \Omega)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} g_{a}(t-\tau) g_{a}(\tau) d \tau\right] e^{-j \Omega t} d t=\int_{-\infty}^{\infty} g_{a}(\tau)\left[\int_{-\infty}^{\infty} g_{a}(t-\tau) e^{-j \Omega t} d t\right] d \tau \\
& =\int_{-\infty}^{\infty} g_{a}(\tau) e^{-j \Omega \tau} G_{a}(j \Omega) d \tau=G_{a}(j \Omega) \int_{-\infty}^{\infty} g_{a}(\tau) e^{-j \Omega \tau} d \tau=G_{a}(j \Omega) G_{a}(j \Omega) . \text { The }
\end{aligned}
$$

highest frequency present in $y_{4}(t)$ is therefore the same as that of $g_{a}(t)$ and hence, the Nyquist frequency of $y_{4}(t)$ is Ω_{m}.
(e) Now $g_{a}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G_{a}(j \Omega) e^{j \Omega t} d \Omega$. Differentiating both sides of this equation we get $\frac{d g_{a}(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \Omega G_{a}(j \Omega) e^{j \Omega t} d \Omega$. Hence, it follows that the CTFT of $y_{5}(t)=\frac{d g_{a}(t)}{d t}$ is simply $j \Omega G_{a}(j \Omega)$. The highest frequency present in $y_{5}(t)$ is therefore the same as that of $g_{a}(t)$ and hence, the Nyquist frequency of $y_{5}(t)$ is Ω_{m}.
4.4 By Parseval's relation, the total energy of $g_{a}(t)$ is given by
$\mathcal{E}_{g_{a}}(t)=\int_{-\infty}^{\infty}\left|g_{a}(t)\right|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|G_{a}(j \Omega)\right|^{2} d \Omega=\frac{1}{2 \pi} \int_{-\Omega_{m}}^{\Omega_{m}}\left|G_{a}(j \Omega)\right|^{2} d \Omega$. Likewise, the
total energy of $g[n]$ is given by $\mathcal{E}_{g[n]}=\sum_{-\infty}^{\infty}|g[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|G\left(e^{j \omega}\right)\right|^{2} d \omega$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T}\left|\frac{1}{T} G_{a}(j \Omega)\right|^{2} d(\Omega T)=\frac{1}{2 \pi T} \int_{-\pi / T}^{\pi / T}\left|G_{a}(j \Omega)\right|^{2} d \Omega=\frac{1}{2 \pi T} \int_{-\Omega_{m}}^{\Omega_{m}}\left|G_{a}(j \Omega)\right|^{2} d \Omega \\
& =\frac{1}{T} \mathrm{E}_{g_{a}(t)} .
\end{aligned}
$$

4.5 Sampling period $T=\frac{2.5}{5000}=$ sec. Hence, the sampling frequency is $F_{T}=\frac{1}{T}=2000 \mathrm{~Hz}$. Therefore, the highest frequency component that could be present in the continuous-time signal has a frequency $\frac{20000}{2}=1000 \mathrm{~Hz}$.
4.6 Since the continuous-time signal $x_{a}(t)$ is being sampled at 2 kHz rate, the sampled version of its i-th sinusoidal component with a frequency F_{i} will generate discretetime sinusoidal signals with frequencies $F_{i} \pm 2000 n,-\infty<n<\infty$. Hence, the frequencies $F_{\text {im }}$ generated in the sampled version associated with the sinusoidal components present in are as follows:

$$
\begin{aligned}
& F_{1}=300 \mathrm{~Hz} \Rightarrow F_{1 m}=300,1700,2300, \ldots \mathrm{~Hz} \\
& F_{2}=500 \mathrm{~Hz} \Rightarrow F_{2 m}=500,1500,2500, \ldots \mathrm{~Hz} \\
& F_{3}=1200 \mathrm{~Hz} \Rightarrow F_{3 m}=1200,800,3200, \ldots \mathrm{~Hz} \\
& F_{4}=2150 \mathrm{~Hz} \Rightarrow F_{4 m}=2150,150,4150, \ldots \mathrm{~Hz} \\
& F_{5}=3500 \mathrm{~Hz} \Rightarrow F_{5 m}=3500,1500,5500,500,7500, \ldots \mathrm{~Hz}
\end{aligned}
$$

After filtering by a lowpass filter with a cutoff at 900 Hz , the frequencies of the sinusoidal components in $y_{a}(t)$ are $150,300,500,800 \mathrm{~Hz}$.
4.7 One possible set of values for the frequencies present in $y_{a}(t)$ are: $F_{1}=350 \mathrm{~Hz}$, $F_{2}=575 \mathrm{~Hz}, F_{3}=815 \mathrm{~Hz}$, and $F_{4}=9650 \mathrm{~Hz}$. Another possible set of values for the frequencies present in $y_{a}(t)$ are: $F_{1}=350 \mathrm{~Hz}, F_{2}=575 \mathrm{~Hz}, F_{3}=815 \mathrm{~Hz}$, and $F_{4}=10575 \mathrm{~Hz}$. Hence, the solution is not unique.
$4.8 \quad t=n T=\frac{n}{50}$. Therefore,

$$
\begin{aligned}
x[n]=4 & \sin \left(\frac{20 \pi n}{50}\right)-5 \cos \left(\frac{24 \pi n}{50}\right)+3 \sin \left(\frac{120 \pi n}{50}\right)+2 \cos \left(\frac{176 \pi n}{50}\right) \\
& =4 \sin \left(\frac{2 \pi n}{5}\right)-5 \cos \left(\frac{12 \pi n}{25}\right)+3 \sin \left(\frac{(10+2) \pi n}{5}\right)+2 \cos \left(\frac{(100-12) \pi n}{25}\right) \\
& =4 \sin \left(\frac{2 \pi n}{5}\right)-5 \cos \left(\frac{12 \pi n}{25}\right)+3 \sin \left(\frac{2 \pi n}{5}\right)+2 \cos \left(\frac{(12 \pi n}{25}\right) .
\end{aligned}
$$

4.9 Both channels are being sampled at 45 kHz . Therefore, there are a total of $2 \times 45000=90000$ samples $/ \mathrm{sec}$. Each sample is quantized using 12 bits. Hence, the total bit rate of the two channels after sampling and digitization is 108 kpbs .
$4.10 h_{r}(t)=\frac{\sin \left(\Omega_{c} t\right)}{\Omega_{T} t / 2}$. Therefore, $h_{r}(n T)=\frac{\sin \left(\Omega_{c} n T\right)}{\Omega_{T} n T / 2}$. Since $T=2 \pi / \Omega_{T}$, we have $h_{r}(n T)=\frac{\sin \left(\frac{2 \pi \Omega_{c} n}{\Omega_{T}}\right)}{\pi n}$. For $\Omega_{c}=\Omega_{T} / 2$, we thus have $h_{r}(n T)=\frac{\sin (\pi n)}{\pi n}=\delta[n]$.
4.11 The spectrum of the sampled signal is as shown below:

Now, $T=\frac{2 \pi}{2 \Omega_{m}}=\frac{\pi}{\Omega_{m}}$. As a result, $\omega_{c}=\frac{\Omega_{m} \pi}{3 \Omega_{m}}=\frac{\pi}{3}$. Hence after lowpass filtering the spectrum of the output continuous-time signal $y_{a}(t)$ will be as shown below:

4.12 (a) $\Omega_{1}=100 \pi, \Omega_{1}=150 \pi$. Thus, $\Delta \Omega=\Omega_{2}-\Omega_{1}=50 \pi$. Note $\Delta \Omega$ is an integer multiple of Ω_{2}. Hence, we choose the sampling angular frequency as $\Omega_{T}=2 \Delta \Omega=100 \pi=\frac{2 \times 150 \pi}{M}$, which is satisfied for $M=3$. The sampling frequency is therefore 50 Hz . The CTFT $X_{p}(j \Omega)$ of the sampled sequence and the frequency response $H_{r}(j \Omega)$ of the desired reconstruction filter are shown below.

(b) $\Omega_{1}=160 \pi, \Omega_{1}=250 \pi$. Thus, $\Delta \Omega=\Omega_{2}-\Omega_{1}=90 \pi$. Note $\Delta \Omega$ is not an integer multiple of Ω_{2}. Hence, we extend the bandwidth to the left by assuming the lowest frequency to be Ω_{0} and choose the sampling angular frequency as $\Omega_{T}=2 \Delta \Omega=2\left(\Omega_{2}-\Omega_{0}\right)=\frac{2 \times 250 \pi}{M}$, which is satisfied for $\Omega_{0}=125 \pi$ and $M=2$. The sampling frequency is therefore 125 Hz . The CTFT $X_{p}(j \Omega)$ of the sampled sequence and the frequency response $H_{r}(j \Omega)$ of the desired reconstruction filter are shown below.

(c) $\Omega_{1}=110 \pi, \Omega_{1}=180 \pi$. Thus, $\Delta \Omega=\Omega_{2}-\Omega_{1}=70 \pi$. Note $\Delta \Omega$ is not an integer multiple of Ω_{2}. Hence, we extend the bandwidth to the left by assuming the lowest frequency to be Ω_{0} and choose the sampling angular frequency as $\Omega_{T}=2 \Delta \Omega=2\left(\Omega_{2}-\Omega_{0}\right)=\frac{2 \times 180 \pi}{M}$, which is satisfied for $\Omega_{0}=90 \pi$ and $M=2$. The sampling frequency is therefore 90 Hz . The CTFT $X_{p}(j \Omega)$ of the sampled sequence and the frequency response $H_{r}(j \Omega)$ of the desired reconstruction filter are shown below.

$4.13 \quad \alpha_{p}=-20 \log _{10}\left(1-\delta_{p}\right) \mathrm{dB}$ and $\alpha_{s}=-20 \log _{10} \delta_{s} \mathrm{~dB}$. Therefore, $\delta_{p}=1-10^{-\alpha_{p} / 20}$ and $\delta_{s}=10^{-\alpha_{s} / 20}$.
(a) $\alpha_{p}=0.21 \mathrm{~dB}$ and $\alpha_{s}=52 \mathrm{~dB}$. Hence, $\delta_{p}=0.0239$ and $\delta_{s}=0.025$.
(b) $\alpha_{p}=0.03 \mathrm{~dB}$ and $\alpha_{s}=69 \mathrm{~dB}$. Hence, $\delta_{p}=0.0034$ and $\delta_{s}=0.00355$.
(c) $\alpha_{p}=0.33 \mathrm{~dB}$ and $\alpha_{s}=57 \mathrm{~dB}$. Hence, $\delta_{p}=0.0373$ and $\delta_{s}=0.0014$.
4.14 $\quad H_{a}(s)=\frac{a}{s+a}$. Thus, $H_{a}(j \Omega)=\frac{a}{j \Omega+a}$, and hence,
$\left|H_{a}(j \Omega)\right|^{2}=H_{a}(j \Omega) H_{a}(-j \Omega)=\frac{a}{j \Omega+a} \cdot \frac{a}{-j \Omega+a}=\frac{a^{2}}{\Omega^{2}+a^{2}}$. As Ω increases from 0 to ∞, it can be seen that the square-magnitude function $\left|H_{a}(j \Omega)\right|^{2}$ and hence, the magnitude function $\left|H_{a}(j \Omega)\right|=\frac{a}{\sqrt{\Omega^{2}+a^{2}}}$ decreases monotonically from $\left|H_{a}(j 0)\right|=1$ to $\left|H_{a}(j \infty)\right|=0$. Let Ω_{c} denote the $3-\mathrm{dB}$ cutoff frequency. Then $\left|H_{a}\left(j \Omega_{c}\right)\right|^{2}=\frac{a^{2}}{\Omega_{c}^{2}+a^{2}}=\frac{1}{2}$, which implies $\Omega_{c}=a$.
4.15 $\quad G_{a}(s)=\frac{s}{s+a}$. Thus, $G_{a}(j \Omega)=\frac{j \Omega}{j \Omega+a}$, and hence, $\left|G_{a}(j \Omega)\right|^{2}=G_{a}(j \Omega) G_{a}(-j \Omega)=\frac{j \Omega}{j \Omega+a} \cdot \frac{-j \Omega}{-j \Omega+a}=\frac{\Omega^{2}}{\Omega^{2}+a^{2}}$. As Ω increases from 0 to ∞, it can be seen that the square-magnitude function $\left|G_{a}(j \Omega)\right|^{2}$ and hence, the magnitude function $\left|G_{a}(j \Omega)\right|=\frac{\Omega}{\sqrt{\Omega^{2}+a^{2}}}$ increases monotonically from $\left|G_{a}(j 0)\right|=0$ to $\left|G_{a}(j \infty)\right|=1$. Let Ω_{c} denote the $3-\mathrm{dB}$ cutoff frequency. Then $\left|G_{a}\left(j \Omega_{c}\right)\right|^{2}=\frac{\Omega_{c}^{2}}{\Omega_{c}^{2}+a^{2}}=\frac{1}{2}$, which implies $\Omega_{c}=a$.
4.16 $\quad H_{a}(s)=\frac{a}{s+a}=\frac{1}{2}\left(1-\frac{s-a}{s+a}\right)=\frac{1}{2}\left(A_{1}(s)-A_{2}(s)\right)$ and $G_{a}(s)=\frac{s}{s+a}$
$=\frac{1}{2}\left(1+\frac{s-a}{s+a}\right)=\frac{1}{2}\left(A_{1}(s)+A_{2}(s)\right)$, where $A_{1}(s)=1$ and $A_{2}(s)=\frac{s-a}{s+a}$. Now,
$\left|A_{1}(j \Omega)\right|=1$ and $\left\lvert\, A_{2}(j \Omega)^{2}=\frac{j \Omega-a}{j \Omega+a} \cdot \frac{-j \Omega-a}{-j \Omega+a}=\frac{j \Omega-a}{j \Omega+a} \cdot \frac{j \Omega+a}{j \Omega-a}=1\right.$ for all values of $\Omega, A_{1}(s)$ and $A_{2}(s)$ are allpass functions.
4.17

$$
\begin{aligned}
& H_{a}(s)=\frac{b s}{s^{2}+b s+\Omega_{o}^{2}} . \text { Thus, } H_{a}(j \Omega)=\frac{j b \Omega}{j b \Omega+\Omega_{o}^{2}-\Omega^{2}} \text { and hence, } \\
& \left|H_{a}(j \Omega)\right|^{2}=H_{a}(j \Omega) H_{a}(-j \Omega)=\frac{j b \Omega}{j b \Omega+\Omega_{o}^{2}-\Omega^{2}} \cdot \frac{-j b \Omega}{-j b \Omega+\Omega_{o}^{2}-\Omega^{2}} \\
& =\frac{b^{2} \Omega^{2}}{\left(\Omega_{o}^{2}-\Omega^{2}\right)^{2}+b^{2} \Omega^{2}} . \text { At } \Omega=0,\left|H_{a}(j 0)\right|=0, \text { at } \Omega=\infty,\left|H_{a}(j \infty)\right|=0, \text { and at }
\end{aligned}
$$

$$
\Omega=\Omega_{o},\left|H_{a}(j \Omega)\right| \text { has the maximum value of } 1 . \text { Now, }
$$

$$
\frac{d\left|H_{a}(j \Omega)\right|^{2}}{d \Omega}=\frac{2 b^{2} \Omega\left(\Omega_{o}^{2}-\Omega^{2}\right)\left(\Omega_{o}^{2}+\Omega^{2}\right)}{\left(\left(\Omega_{o}^{2}-\Omega^{2}\right)^{2}+b^{2} \Omega^{2}\right)^{2}} \text {. It therefore follows that in the }
$$ frequency range $0 \leq \Omega<\Omega_{o}, \frac{d\left|H_{a}(j \Omega)\right|^{2}}{d \Omega}>0$, and in the frequency range $\Omega_{o}<\Omega<\infty, \frac{d\left|H_{a}(j \Omega)\right|^{2}}{d \Omega}<0$. Hence, in the frequency range $0 \leq \Omega<\Omega_{o}$, $\left|H_{a}(j \Omega)\right|^{2}$ is a monotonically increasing function of Ω and in the frequency range $\Omega_{o}<\Omega<\infty,\left|H_{a}(j \Omega)\right|^{2}$ is a monotonically decreasing function of Ω. Or in other words, $H_{a}(s)$ has a bandpass magnitude response. The $3-\mathrm{dB}$ cutoff frequencies are given by the solution of $\frac{b^{2} \Omega_{c}^{2}}{\left(\Omega_{o}^{2}-\Omega_{c}^{2}\right)^{2}+b^{2} \Omega_{c}^{2}}=\frac{1}{2}$, or, $\left(\Omega_{o}^{2}-\Omega_{c}^{2}\right)^{2}+b^{2} \Omega_{c}^{2}=2 b^{2} \Omega_{c}^{2}$, i.e., $\Omega_{c}^{4}-\left(b^{2}+2 \Omega_{o}^{2}\right) \Omega_{c}^{2}+\Omega_{o}^{4}=0$. Substituting $x=\Omega_{c}^{2}$ in the last equation we get $x^{2}-\left(b^{2}+2 \Omega_{o}^{2}\right) x+\Omega_{o}^{4}=0$. Let $x_{1}=\Omega_{1}^{2}$ and $x_{2}=\Omega_{2}^{2}$ be the two roots of this quadratic equation. Then, $x_{1} x_{2}=\Omega_{1}^{2} \Omega_{2}^{2}=\Omega_{o}^{4}$ and $x_{1}+x_{2}=\Omega_{1}^{2}+\Omega_{2}^{2}=b^{2}+2 \Omega_{o}^{2}$. Therefore, $\Omega_{1} \Omega_{2}=\Omega_{o}^{2}$. From the last two equations we get $\Omega_{1}^{2}+\Omega_{2}^{2}-2 \Omega_{1} \Omega_{2}=\left(\Omega_{2}-\Omega_{1}\right)^{2}=b^{2}+2 \Omega_{o}^{2}-2 \Omega_{o}^{2}=b^{2}$.

Hence, $\Omega_{2}-\Omega_{1}=b$.
4.18 $G_{a}(s)=\frac{s^{2}+\Omega_{o}^{2}}{s^{2}+b s+\Omega_{o}^{2}}$. Thus, $G_{a}(j \Omega)=\frac{\Omega_{o}^{2}-\Omega^{2}}{j b \Omega+\Omega_{o}^{2}-\Omega^{2}}$ and hence,
$\left|G_{a}(j \Omega)\right|^{2}=G_{a}(j \Omega) G_{a}(-j \Omega)=\frac{\Omega_{o}^{2}-\Omega^{2}}{j b \Omega+\Omega_{o}^{2}-\Omega^{2}} \cdot \frac{\Omega_{o}^{2}-\Omega^{2}}{-j b \Omega+\Omega_{o}^{2}-\Omega^{2}}$
$=\frac{\left(\Omega_{o}^{2}-\Omega^{2}\right)^{2}}{\left(\Omega_{o}^{2}-\Omega^{2}\right)^{2}+b^{2} \Omega^{2}}$. Note $\left|G_{a}(j 0)\right|=\left|G_{a}(j \infty)\right|=1$ and $\left|G_{a}\left(j \Omega_{o}\right)\right|=0$.
Now, $\frac{d\left|G_{a}(j \Omega)\right|^{2}}{d \Omega}=\frac{2 b^{2} \Omega^{3}\left(\Omega^{2}-\Omega_{o}^{2}\right)}{\left(\left(\Omega_{o}^{2}-\Omega^{2}\right)^{2}+b^{2} \Omega^{2}\right)^{2}}$. It therefore follows that in the frequency range $0 \leq \Omega<\Omega_{o}, \frac{d \mid G_{a}(j \Omega)^{2}}{d \Omega}<0$, and in the frequency range $\Omega_{o}<\Omega<\infty, \frac{d\left|G_{a}(j \Omega)\right|^{2}}{d \Omega}>0$. Hence, in the frequency range $0 \leq \Omega<\Omega_{o}$, $\left|G_{a}(j \Omega)\right|^{2}$ is a monotonically decreasing function of Ω and in the frequency range $\Omega_{o}<\Omega<\infty,\left|G_{a}(j \Omega)\right|^{2}$ is a monotonically increasing function of Ω. Or in other words, $G_{a}(s)$ has a bandstop magnitude response.
The $3-\mathrm{dB}$ cutoff frequencies are given by the solution of $\frac{\left(\Omega_{o}^{2}-\Omega_{c}^{2}\right)^{2}}{\left(\Omega_{o}^{2}-\Omega_{c}^{2}\right)^{2}+b^{2} \Omega_{c}^{2}}=\frac{1}{2}$, or, $2\left(\Omega_{o}^{2}-\Omega_{c}^{2}\right)^{2}=\left(\Omega_{o}^{2}-\Omega_{c}^{2}\right)^{2}+b^{2} \Omega_{c}^{2}$, i.e., $\Omega_{c}^{4}-\left(b^{2}+2 \Omega_{o}^{2}\right) \Omega_{c}^{2}+\Omega_{o}^{4}=0$. This last equation is exactly the same as in solution of Problem 4.18 from which we get $\Omega_{1} \Omega_{2}=\Omega_{o}^{2}$ and $\Omega_{2}-\Omega_{1}=b$.
4.19
$H_{a}(s)=\frac{b s}{s^{2}+b s+\Omega_{o}^{2}}=\frac{1}{2}\left(1-\frac{s^{2}-b s+\Omega_{o}^{2}}{s^{2}+b s+\Omega_{o}^{2}}\right)=\frac{1}{2}\left(A_{1}(s)-A_{2}(s)\right)$ and
$G_{a}(s)=\frac{s^{2}+\Omega_{o}^{2}}{s^{2}+b s+\Omega_{o}^{2}}=\frac{1}{2}\left(1+\frac{s^{2}-b s+\Omega_{o}^{2}}{s^{2}+b s+\Omega_{o}^{2}}\right)=\frac{1}{2}\left(A_{1}(s)+A_{2}(s)\right)$, where
$A_{1}(s)=1$ and $A_{2}(s)=\frac{s^{2}-b s+\Omega_{o}^{2}}{s^{2}+b s+\Omega_{o}^{2}}$. Now, $\left|A_{1}(j \Omega)\right|=1$ and $\left|A_{2}(j \Omega)\right|^{2}$
$=A_{2}(j \Omega) A_{2}(-j \Omega)=\frac{-\Omega^{2}-j b \Omega+\Omega_{o}^{2}}{-\Omega^{2}+j b \Omega+\Omega_{o}^{2}} \cdot \frac{-\Omega^{2}+j b \Omega+\Omega_{o}^{2}}{-\Omega^{2}-j b \Omega+\Omega_{o}^{2}}=1$, for all values of
$\Omega, A_{1}(s)$ and $A_{2}(s)$ are allpass functions.
4.20 (a) Let $A_{i}(s)=\frac{s+\lambda_{i}^{*}}{s-\lambda_{i}}$. Since the pole of $A_{i}(s)$ is strictly in the left-half s-plane and hence, $A_{i}(s)$ is causal and stable. Now $\left|A_{i}(j \Omega)\right|^{2}=A_{i}(j \Omega) A_{i}^{*}(j \Omega)$ $=\frac{j \Omega+\lambda_{i}^{*}}{j \Omega-\lambda_{i}} \cdot \frac{-j \Omega+\lambda_{i}}{-j \Omega-\lambda_{i}^{*}}=\frac{j \Omega+\lambda_{i}^{*}}{j \Omega-\lambda_{i}} \cdot \frac{j \Omega-\lambda_{i}}{j \Omega+\lambda_{i}^{*}}=1$. Hence, $A_{i}(s)$ is an allpass function. Since, $A(s)=\prod_{i=1}^{N} A_{i}(s)$, it is a product of causal, stable allpass functions, and as a result, is also a causal, stable allpass function.
(b) $\left|A_{i}(s)\right|^{2}=A_{i}(s) A_{i}^{*}(s)=\frac{s+\lambda_{i}^{*}}{s-\lambda_{i}} \cdot \frac{s^{*}+\lambda_{i}}{s^{*}-\lambda_{i}^{*}}=\frac{|s|^{2}+\left|\lambda_{i}\right|^{2}+2 \operatorname{Re}\left\{s \lambda_{i}\right\}}{|s|^{2}+\left|\lambda_{i}\right|^{2}-2 \operatorname{Re}\left\{s * \lambda_{i}\right\}}$. Let
$s=\sigma+j \Omega$ and $\lambda_{i}=a_{i}+j b_{i}$. Then $\left|A_{i}(s)\right|^{2}=\frac{\left(|s|^{2}+\left|\lambda_{i}\right|^{2}-2 \Omega b_{i}\right)+2 \sigma a_{i}}{\left(|s|^{2}+\left|\lambda_{i}\right|^{2}-2 \Omega b_{i}\right)-2 \sigma a_{i}}$.
Since $a_{i}<0$, it follows from the above that $\left|A_{i}(s)\right|^{2}<1$ for $\sigma>0,\left|A_{i}(s)\right|^{2}=1$ for $\sigma=0$, and $\left|A_{i}(s)\right|^{2}>1$ for $\sigma<0$.
$4.21\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\left(\Omega / \Omega_{c}\right)^{2 N}}$. Define $D(\Omega)=\frac{1}{\left|H_{a}(j \Omega)\right|^{2}}=1+\left(\Omega / \Omega_{c}\right)^{2 N}$. It
follows then $\frac{d^{k} D(\Omega)}{d \Omega^{k}}=2 N(2 N-1) \cdots(2 N-k+1) \frac{\Omega^{2 N-k}}{\Omega_{c}^{2 N}}$. Therefore,
$\left.\frac{d^{k} D(\Omega)}{d \Omega^{k}}\right|_{\Omega=0}=0$ for $k=1,2, \ldots, N-1$, or, equivalently, $\left.\frac{d^{k}\left|H_{a}(j \Omega)\right|}{d \Omega^{k}}\right|_{\Omega=0}=0$
for $k=1,2, \ldots, N-1$.
4.22 $10 \log _{10}\left(\frac{1}{1+\varepsilon^{2}}\right)=-0.25$. Therefore, $\varepsilon^{2}=10^{0.025}-1=0.0593$. Next, from $10 \log _{10}\left(\frac{1}{A^{2}}\right)=-25$, we get $A^{2}=10^{2.5}=316.2278$. Now, $\frac{1}{k}=\frac{\Omega_{s}}{\Omega_{p}}=\frac{6}{1.5}=4$
and $\frac{1}{k_{1}}=\sqrt{\frac{A^{2}-1}{\varepsilon^{2}}}=\sqrt{\frac{315.2278}{0.0593}}=72.9381$. Hence, $N=\frac{\log _{10}\left(1 / k_{1}\right)}{\log _{10}(1 / k)}=3.0943$.
We choose $N=4$ as the filter order.
To verify using MATLAB, we use the code fragment
[N,Wn] =buttord(2*pi*1500,2*pi*6000,0.25,25,'s');
which yields $N=4$ and $W n=18365.51286$.
4.23 The poles are given by $p_{\ell}=e^{j \pi(5+2 \ell) /}, 1 \leq \ell \leq 6$. Hence,

$$
\begin{aligned}
& p_{1}=e^{j(7 \pi / 12)}=-0.2588+j 0.9659, p_{2}=e^{j(9 \pi / 12)}=-0.7071+j 0.7071, \\
& p_{3}=e^{j(9 \pi / 12)}=-0.9659+j 0.2588, p_{4}=e^{j(11 \pi / 12)}=p_{3}^{*}=-0.9659-j 0.2588, \\
& p_{5}=e^{j(13 \pi / 12)}=p_{2}^{*}=-0.7071-j 0.7071, p_{6}=e^{j(15 \pi / 12)}=p_{1}^{*}=-0.2588-j 0.9659 .
\end{aligned}
$$

The poles can also be determined in MATLAB using the statement $[z, p, k]=$ buttap (6) which yields

$$
\begin{aligned}
p & = \\
& -0.2588+0.9659 i \\
& -0.2588-0.9659 i \\
& -0.7071+0.7071 i \\
& -0.7071-0.7071 i \\
& -0.9659+0.2588 i \\
& -0.9659-0.2588 i
\end{aligned}
$$

4.24 From Eq. (4.41) of text, $T_{N}(\Omega)=2 \Omega T_{N-1}(\Omega)-T_{N-2}(\Omega)$, where $T_{N}(\Omega)$ is defined in Eq. (4.40).

Case 1: $|\Omega| \leq 1$. Making use of Eq. (4.40) in Eq. (4.41) we get

$$
\begin{aligned}
T_{N}(\Omega)= & 2 \Omega \cos \left((N-1) \cdot \cos ^{-1} \Omega\right)-\cos \left((N-2) \cdot \cos ^{-1} \Omega\right) \\
= & 2 \Omega \cos \left(N \cos ^{-1} \Omega-\cos ^{-1} \Omega\right)-\cos \left(N \cos ^{-1} \Omega-2 \cos ^{-1} \Omega\right) \\
= & 2 \Omega\left[\cos \left(N \cos ^{-1} \Omega\right) \cos \left(\cos ^{-1} \Omega\right)+\sin \left(N \cos ^{-1} \Omega\right) \sin \left(\cos ^{-1} \Omega\right)\right] \\
& \quad-\left[\cos \left(N \cos ^{-1} \Omega\right) \cos \left(2 \cos ^{-1} \Omega\right)+\sin \left(N \cos ^{-1} \Omega\right) \sin \left(2 \cos ^{-1} \Omega\right)\right] \\
= & 2 \Omega \cos \left(N \cos ^{-1} \Omega\right) \cos \left(\cos ^{-1} \Omega\right)-\cos \left(N \cos ^{-1} \Omega\right) \cos \left(2 \cos ^{-1} \Omega\right) \\
= & 2 \Omega^{2} \cos \left(N \cos ^{-1} \Omega\right)-\cos \left(N \cos ^{-1} \Omega\right)\left[2 \cos ^{2}\left(\cos ^{-1} \Omega\right)-1\right] \\
= & \cos \left(N \cos ^{-1} \Omega\right)\left[2 \Omega^{2}-2 \Omega^{2}+1\right]=\cos \left(N \cos ^{-1} \Omega\right) .
\end{aligned}
$$

Case 2: $|\Omega|>1$. Making use of Eq. (4.40) in Eq. (4.41) we get $T_{N}(\Omega)=2 \Omega \cosh \left((N-1) \cdot \cosh ^{-1} \Omega\right)-\cosh \left((N-2) \cdot \cosh ^{-1} \Omega\right)$ Using the trigonometric identities
$\cosh (A-B)=\cosh (A) \cosh (B)-\sinh (A) \sinh (B), \quad \sinh (2 A)=2 \sinh (A) \cosh (A)$, and $\cosh (2 A)=2 \cosh ^{2}(A)-1$, and following a similar algebra as in Case 1, we can show $T_{N}(\Omega)=\cosh \left(N \cosh ^{-1} \Omega\right)$.
4.25 From the solution of Problem 4.22, we have $\frac{1}{k}=4$ and $\frac{1}{k_{1}}=72.9381$. Hence,

$$
N=\frac{\cosh ^{-1}\left(1 / k_{1}\right)}{\cosh ^{-1}(1 / k)}=2.4151 . \text { We choose the filter order as } N=3 \text {. }
$$

The filter order obtained using the MATLAB statement
$[\mathrm{N}, \mathrm{Wn}$] = cheb1ord (2*pi*1500, 2*pi*6000, 0.25, 25, 's') results in N=3.
4.26 $10 \log _{10}\left(\frac{1}{1+\varepsilon^{2}}\right)=-0.25$, which yields $\varepsilon=0.2434$. $\quad 10 \log _{10}\left(\frac{1}{A^{2}}\right)=-25$, which yields $A^{2}=316.2278$. Now, $k=\frac{\Omega_{p}}{\Omega_{s}}=\frac{1500}{6000}=0.25$ and $k_{1}=\frac{\varepsilon}{\sqrt{A^{2}-1}}=\frac{0.2434}{\sqrt{315.2278}}=$ $=0.0137$. Substituting the value of k in Eq. (4..55a) we get $k^{\prime}=0.9682$. Then from Eq. (4.55b) we get $\rho_{0}=0.004$. Substituting the value ρ_{0} in Eq. (4.55c) we get $\rho=0.004$.

Finally, from Eq. (4.54) we arrive at $N=2.0591$. We choose the next higher integer as the filter order $N=3$.

The filter order obtained using the MATLAB statement
$[\mathrm{N}, \mathrm{Wn}]=$ ellipord (2*pi*1500,2*pi*6000,0.25, 25, 's') results in $\mathrm{N}=3$.
4.27 $B_{N}(s)=(2 N-1) B_{N-1}(s)+s^{2} B_{N-2}(s)$, where $B_{1}(s)=s+1$ and $B_{2}(s)=s^{2}+3 s+3$.
(a) Thus, $B_{3}(s)=5 B_{2}(s)+s^{2} B_{1}(s)=5\left(s^{2}+3 s+3\right)+s^{2}(s+1)=s^{3}+6 s^{2}+15 s+15$,

$$
\begin{aligned}
B_{4}(s)= & 7 B_{3}(s)+s^{2} B_{2}(s)=7\left(s^{3}+6 s^{2}+15 s+15\right)+s^{2}\left(s^{2}+3 s+3\right) \\
& =s^{4}+10 s^{3}+45 s^{2}+105 s+105
\end{aligned}
$$

(b) $B_{5}(s)=9 B_{4}(s)+s^{2} B_{3}(s)=9\left(s^{4}+10 s^{3}+45 s^{2}+105 s+105\right)+s^{2}\left(s^{3}+6 s^{2}+15 s+15\right)$

$$
=s^{5}+15 s^{4}+105 s^{3}+420 s^{2}+945 s+945 .
$$

$4.28 \Omega_{p}=2 \pi \times 0.24$ and $\hat{\Omega}_{p}=2 \pi \times 3$. The mapping is thus $s=\frac{\Omega_{p} \hat{\Omega}_{p}}{\hat{s}}=\frac{4 \pi^{2} \times 0.72}{\hat{s}}$.
Denote $K=4 \pi^{2} \times 0.72=28.4245$. Hence, the desired highpass transfer function is given by $H_{H P}(\hat{s})=\left.H_{L P}(s)\right|_{s=K / \hat{s}}=\frac{10}{\left(\frac{K}{\hat{s}}\right)^{3}+4.309\left(\frac{K}{\hat{s}}\right)^{2}+9.2835\left(\frac{K}{\hat{s}}\right)+10}$

$$
=\frac{10 \hat{s}^{3}}{K^{3}+4.309 K^{2} \hat{s}+9.2835 K \hat{s}^{2}+10 \hat{s}^{3}}=\frac{10 \hat{\mathrm{~s}}^{3}}{10 \hat{\mathrm{~s}}^{3}+263.8785 \hat{\mathrm{~s}}^{2}+3481.5 \hat{\mathrm{~s}}+22966}
$$

$$
=\frac{\hat{\mathrm{s}}^{3}}{\hat{\mathrm{~s}}^{3}+26.38785 \hat{\mathrm{~s}}^{2}+348.15 \hat{\mathrm{~s}}+2296.6} .
$$

$4.29 \Omega_{p}=2 \pi \times 0.9$ and $\hat{\Omega}_{p}=2 \pi \times 3$. The mapping is thus $s=\frac{\Omega_{p} \hat{\Omega}_{p}}{\hat{s}}=\frac{4 \pi^{2} \times 2.7}{\hat{s}}$. Denote $K=4 \pi^{2} \times 2.7=106.5917$. Hence, the desired lowpass transfer function is given by

$$
\begin{aligned}
& H_{L P}(s)=\left.H_{L P}(s)\right|_{s=K / \hat{s}}=\frac{\left(\frac{K}{\hat{s}}\right)^{3}}{\left(\frac{K}{\hat{s}}\right)^{3}+9.238\left(\frac{K}{\hat{s}}\right)^{2}+40.087\left(\frac{K}{\hat{s}}\right)+100} \\
& =\frac{K^{3}}{K^{3}+9.238 K^{2} \hat{s}+40.087 K \hat{s}^{2}+100 \hat{s}^{3}} \\
& =\frac{12110.735}{\hat{\mathrm{~s}}^{3}+42.729 \hat{\mathrm{~s}}^{2}+1049.602 \hat{\mathrm{~s}}+12110.735} .
\end{aligned}
$$

$4.30 \Omega_{p}=2 \pi \times 0.25=0.5 \pi, \hat{\Omega}_{o}=2 \pi \times 3=6 \pi, \hat{\Omega}_{p 2}-\hat{\Omega}_{p 1}=2 \pi(0.5)=\pi$. The mapping is thus

$$
s=\Omega_{p} \frac{\hat{s}^{2}+\hat{\Omega}_{o}^{2}}{\hat{s}\left(\hat{\Omega}_{p 2}-\hat{\Omega}_{p 1}\right)}=0.5 \pi\left(\frac{\hat{s}^{2}+36 \pi^{2}}{\pi \hat{s}}\right)=\frac{\hat{s}^{2}+36 \pi^{2}}{2 \hat{s}} .
$$

$$
H_{B P}(\hat{s})=\left.H_{L P}(s)\right|_{s=\left(\hat{s}^{2}+36 \pi^{2}\right) / 2 \hat{s}}=\frac{0.01\left[\left(\frac{\hat{s}^{2}+36 \pi^{2}}{2 \hat{s}}\right)^{2}+367.93\right]}{\left(\frac{\hat{s}^{2}+36 \pi^{2}}{2 \hat{s}}\right)^{2}+2.269\left(\frac{\hat{s}^{2}+36 \pi^{2}}{2 \hat{s}}\right)+3.895}
$$

$$
=\frac{0.01\left(\hat{s}^{4}+2182.33 \hat{s}^{2}+126242.18\right)}{\hat{s}^{4}+4.538 \hat{s}^{3}+726.19 \hat{s}^{2}+1612.38 \hat{s}+126242.18}
$$

4.31
$\hat{\Omega}_{p}=2 \pi \times 6.5 \times 10^{3}$ and $\hat{\Omega}_{s}=2 \pi \times 1.5 \times 10^{3}$.
$10 \log _{10}\left(\frac{1}{1+\varepsilon^{2}}\right)=-0.5$, and hence, $\varepsilon^{2}=10^{0.05}-1=0.122$.
$10 \log _{10}\left(\frac{1}{A^{2}}\right)=-40$, and hence, $A^{2}=10^{4}$. Therefore, $\frac{1}{k_{1}}=\sqrt{\frac{A^{2}-1}{\varepsilon^{2}}}=286.2632$.
Set $\Omega_{p}=1$. Then $\Omega_{s}=\frac{\hat{\Omega}_{p}}{\hat{\Omega}_{s}}=\frac{6.5}{1.5}=\frac{13}{3}$. Thus, $\frac{1}{k}=\frac{\Omega_{s}}{\Omega_{p}}=\frac{13}{3}$. The order of the prototype lowpass filter is thus given by $N=\frac{\log _{10}\left(1 / k_{1}\right)}{\log _{10}(1 / k)}=3.8579$. As a result, we choose the filter order as $N=4$.
The order of the prototype lowpass filter obtained using the MATLAB statement $[\mathrm{N}, \mathrm{Wn}]=$ buttord ($1,13 / 3,0.5,40, ~ ' s ')$ results in $N=4$.
The order of the desired highpass filter is also 4 .

$$
\hat{F}_{p 1}=20 \times 10^{3}, \hat{F}_{p 2}=45 \times 10^{3}, \hat{F}_{s 1}=10 \times 10^{3}, \text { and } \hat{F}_{s 2}=50 \times 10^{3} . \text { Thus, }
$$

$\hat{F}_{p 1} \hat{F}_{p 2}=9 \times 10^{8}$ and $\hat{F}_{s 1} \hat{F}_{s 2}=7.5 \times 10^{8}$. Since $\hat{F}_{p 1} \hat{F}_{p 2}>\hat{F}_{s 1} \hat{F}_{s 2}$, we can either increase left stopband edge $\hat{F}_{s 1}$ or decrease the left passband edge $\hat{F}_{p 1}$ to make $\hat{F}_{p 1} \hat{F}_{p 2}=\hat{F}_{s 1} \hat{F}_{s 2}$. We choose to increase $\hat{F}_{s 1}$ to a new value given by $\hat{F}_{s 1}=18 \times 10^{3}$, in which case $\hat{F}_{p 1} \hat{F}_{p 2}=\hat{F}_{s 1} \hat{F}_{s 2}=\hat{F}_{o}^{2}=9 \times 10^{8}$. The center angular frequency of the bandpass filter is therefore $\hat{\Omega}_{o}=2 \pi \times 30 \times 10^{3}$. The passband width is
$B_{w}=\hat{\Omega}_{p 1}-\hat{\Omega}_{p 2}=2 \pi \times 25 \times 10^{3}$.
To determine the bandedges of the prototype lowpass filter we set $\Omega_{p}=1$ and thus,
$\Omega_{s}=\Omega_{p} \frac{\hat{\Omega}_{o}^{2}-\hat{\Omega}_{s 1}^{2}}{\hat{\Omega}_{s 1} B_{w}}=\frac{30^{2}-18^{2}}{18 \times 25}=1.28$.
Now, $k=\frac{\Omega_{p}}{\Omega_{s}}=\frac{1}{1.28}=0.78125$. Hence, $k^{\prime}=\sqrt{1-k^{2}}=0.62421826$.
Next, $10 \log _{10}\left(\frac{1}{1+\varepsilon^{2}}\right)=-0.25$ or equivalently, $\log _{10}\left(1+\varepsilon^{2}\right)=0.025$ which yields
$\varepsilon^{2}=10^{0.025}-1=0.059253725$ or $\varepsilon=0.243421$. Likewise, $10 \log _{10}\left(\frac{1}{A^{2}}\right)=-50$
or, equivalently, $\log _{10}\left(A^{2}\right)=5$ which yields $A^{2}=10^{5}=100000$. Therefore,
$k_{1}=\frac{\varepsilon}{\sqrt{A^{2}-1}}=7.69768 \times 10^{-4}, \rho_{0}=\frac{1-\sqrt{k^{\prime}}}{2\left(1+\sqrt{k^{\prime}}\right)}=0.058635856$. As a result,
$\rho=\rho_{0}+2\left(\rho_{0}\right)^{5}+15\left(\rho_{0}\right)^{9}+150\left(\rho_{0}\right)^{13}=0.058637246$. Hence,
$N=\frac{2 \log _{10}\left(4 / k_{1}\right)}{\log _{10}(1 / \rho)}=6.0328$. We choose $N=7$ as the order of the prototype lowpass
filter.
Note that the order can also estimated using the specifications of the bandpass filter. To this end, the statement to use is
[N, Wn] =ellipord([20 45],[15 50],0.25,50,'s') which also yields N=7 as the order of the prototype lowpass filter. The order of the desired bandpass filter is therefore $7 \times 2=14$.
$4.33 \hat{F}_{p 1}=10 \times 10^{6}, \hat{F}_{p 2}=70 \times 10^{6}, \hat{F}_{s 1}=20 \times 10^{6}$, and $\hat{F}_{s 2}=45 \times 10^{6}$. Thus, $\hat{F}_{p 1} \hat{F}_{p 2}=70 \times 10^{13}$ and $\hat{F}_{s 1} \hat{F}_{s 2}=90 \times 10^{13}$. Since $\hat{F}_{p 1} \hat{F}_{p 2}<\hat{F}_{s 1} \hat{F}_{s 2}$, we can either increase left passband edge $\hat{F}_{p 1}$ or decrease the left stopband edge $\hat{F}_{s 1}$ to make $\hat{F}_{p 1} \hat{F}_{p 2}=\hat{F}_{s 1} \hat{F}_{s 2}$. We choose to increase $\hat{F}_{p 1}$ to a new value given by
$\hat{F}_{p 1} \hat{F}_{p 2}=\frac{\hat{F}_{s 1} \hat{F}_{s 2}}{\hat{F}_{p 2}}=12.8571 \times 10^{6}$, in which case $\hat{F}_{p 1} \hat{F}_{p 2}=\hat{F}_{s 1} \hat{F}_{s 2}=F_{o}^{2}=700 \times 10^{12}$.
The width of the stopband is $B_{w}=\hat{\Omega}_{s 2}-\hat{\Omega}_{s 1}=2 \pi \times 25 \times 10^{6}$ and the center angular frequency of the stopband is $\Omega_{o}^{2}=4 \pi^{2} \times 700 \times 10^{12}$.
To determine the bandedges of the prototype lowpass filter we set $\Omega_{s}=1$ resulting in its passband edge $\Omega_{p}=\Omega_{p} \frac{\hat{\Omega}_{p 1} B_{w}}{\hat{\Omega}_{o}^{2}-\hat{\Omega}_{p 1}^{2}}=0.4375$.
Now, $10 \log _{10}\left(\frac{1}{1+\varepsilon^{2}}\right)=-0.5$ or equivalently, $\log _{10}\left(1+\varepsilon^{2}\right)=0.05$ which yields $\varepsilon^{2}=10^{0.05}-1=0.1220184543$ or $\varepsilon=0.349114$. Likewise, $10 \log _{10}\left(\frac{1}{A^{2}}\right)=-30$ or, equivalently, $\log _{10}\left(A^{2}\right)=3$ which yields $A^{2}=10^{3}=1000$. Therefore, $\frac{1}{k}=\frac{\Omega_{s}}{\Omega_{p}}=\frac{1}{0.4375}=2.2857$ and $\frac{1}{k_{1}}=\frac{\sqrt{A^{2}-1}}{\varepsilon}=\frac{\sqrt{999}}{0.349114}=90.4836236$.
Substituting the values of $\frac{1}{k}$ and $\frac{1}{k_{1}}$ in Eq. (4.43) we get
$N=\frac{\cosh ^{-1}(90.4836236)}{\cosh ^{-1}(2.2857)}=3.5408$. We therefore choose $N=4$ as the order of the
prototype lowpass filter. The order of the desired bandstop filter is thus 8 .
Using the statement $[\mathrm{N}, \mathrm{Wn}]=$ cheb1ord ($\left.0.4375,1,0.5,30, \mathrm{~s}^{\prime}\right)$ we get $\mathrm{N}=4$. Note that the order can also estimated using the specifications of the bandstop filter. To This end, the statement to use is
$[\mathrm{N}, \mathrm{Wn}$] = cheb1ord ([10 70], [20 45], 0.5,30, 's') which also yields $\mathrm{N}=4$ as the order of the prototype lowpass filter.
4.34 From Eq. (4.71), the difference in dB in the attenuation levels at Ω_{p} and Ω_{s} is given by $20 N \log _{10}\left(\Omega_{p} / \Omega_{s}\right)$. Hence, for $\Omega_{o}=2 \Omega_{p}$, the attenuation difference in dB is equal to $20 N \log _{10} 2=6.0206 \mathrm{~N}$. Likewise, for $\Omega_{o}=3 \Omega_{p}$, the attenuation difference in dB is equal to $20 N \log _{10} 3=9.5424 N$. Finally, for $\Omega_{o}=4 \Omega_{p}$, the attenuation difference in dB is equal to $20 N \log _{10} 4=12.0412 N$.
4.35 The equivalent representation of the D/A converter of Figure 4.48 reduces to the circuit shown below if j-th bit is ON and the remaining bits are OFF, i.e., $a_{j}=1$ and $a_{k}=0, k \neq j$.

In the above circuit, $Y_{\text {in }}$ is the total conductance seen by the load conductance G_{L} which is given by $Y_{\text {in }}=\sum_{i=0}^{N-1} 2^{i}=2^{N}-1$. The above circuit can be redrawn as indicated below:

Using the voltage-divider relation we then get $V_{o, j}=\frac{2^{j-1}}{Y_{i n}+G_{L}} \cdot a_{j} V_{R}$. Using the superposition theorem, the general expression for the output voltage V_{o} is thus given by

$$
V_{o}=\sum_{j=1}^{N} \frac{2^{j-1}}{Y_{i n}+G_{L}} \cdot a_{j} V_{R}=\sum_{j=1}^{N} 2^{j-1} a_{j}\left(\frac{R_{L}}{1+\left(2^{N}-1\right) R_{L}}\right) V_{R} .
$$

4.36 The equivalent representation of the D/A converter of Figure 4.49 reduces to the circuit shown below on the left if N-th bit is ON and the remaining bits are OFF, i.e., $a_{N}=1$ and $a_{k}=0, k \neq N$,

which simplifies to the circuit shown above on the right.
Using the voltage-divider relation we then get

$$
V_{o, N}=\frac{\frac{G}{2}}{\frac{G}{2}+G_{L}+\frac{G}{2}} \cdot a_{N} V_{R}=\frac{R_{L}}{2\left(R+R_{L}\right)} \cdot a_{N} V_{R}
$$

The equivalent representation of the D / A converter of Figure 4.49 reduces to the circuit shown below on the left if $(N-1)$-th bit is ON and the remaining bits are OFF, i.e., $a_{N-1}=1$ and $a_{k}=0, k \neq N-1$,

which simplifies to the circuit shown above on the right.
Its Thevenin equivalent circuit is indicated below:

from which we readily obtain

$$
V_{o, N-1}=\frac{\frac{G}{2}}{G+G_{L}} \cdot \frac{a_{N-1}}{2} V_{R}=\frac{R_{L}}{2\left(R_{L}+R\right)} \cdot \frac{a_{N-1}}{2} V_{R}
$$

Following the same procedure we can show that if the ℓ-th bit is ON and the remaining bits are OFF, i.e., $a_{\ell}=1$, and $a_{k}=0, k \neq \ell$, then

$$
V_{o, \ell}=\frac{R_{L}}{2\left(R_{L}+R\right)} \cdot \frac{a_{\ell}}{2^{N-\ell}} V_{R}
$$

Hence, in general we have

$$
V_{o}=\sum_{\ell=1}^{N} \frac{R_{L}}{2\left(R_{L}+R\right)} \cdot \frac{a_{\ell}}{2^{N-\ell}} V_{R} .
$$

4.37 From the input-output relation of the first-order hold, we get the expression for the impulse response as $h_{f}(t)=\delta(n T)+\frac{\delta(n T)-\delta(n T-T)}{T}(t-n T), n T \leq t<(n+1) T$. In the range $0 \leq t<T$, the impulse response is given by $h_{f}(t)=\delta(0)+\frac{\delta(0)-\delta(-T)}{T} t=1+\frac{t}{T}$.
Likewise, in the range $T \leq t<2 T$, the impulse response is given by
$h_{f}(t)=\delta(T)+\frac{\delta(T)-\delta(0)}{T}(t-T)=1-\frac{t}{T}$. Outside these two ranges, $h_{f}(t)=0$. Hence we have

$$
h_{f}(t)=\left\{\left.\begin{array}{ccc}
1+\frac{t}{T}, & 0 \leqslant t<T, & h_{f}(t) \\
1-\frac{t}{T}, & T \leqslant t<2 T, & 2 \\
0, & \text { otherwise. } & -1
\end{array} \right\rvert\,\right.
$$

Using the step function we can write

$$
\begin{aligned}
& h_{f}(t)=\left(1+\frac{t}{T}\right)[\mu(t)-\mu(t-T)]+\left(1-\frac{t}{T}\right)[\mu(t-T)-\mu(t-2 T)] \\
& =\mu(t)+\frac{t}{T} \mu(t)-\frac{2(t-T)}{T} \mu(t-T)-2 \mu(t-T)-\mu(t-2 T)+\frac{(t-2 T)}{T} \mu(t-2 T)+2 \mu(t-2 T) .
\end{aligned}
$$

Taking the Laplace transform of the above equation we arrive at the transfer function

$$
H_{f}(s)=\frac{1}{s}+\frac{1}{T s^{2}}-\frac{2}{T} \cdot \frac{e^{-s T}}{s^{2}}-2 \frac{e^{-s T}}{s}-\frac{e^{-2 s T}}{s}+\frac{1}{T} \cdot \frac{e^{-2 s T}}{s^{2}}+2 \frac{e^{-2 s T}}{s}=\left(\frac{1+s T}{T}\right)\left(\frac{1-e^{-s T}}{s}\right)^{2} .
$$

Hence, the frequency response is given by

$$
\begin{equation*}
H_{f}(j \Omega)=\left(\frac{1+j \Omega T}{T}\right)\left(\frac{1-e^{-j \Omega T}}{j \Omega}\right)^{2}=T \sqrt{1+\Omega^{2} T^{2}}\left(\frac{2 \sin (\Omega T / 2)}{\Omega T / 2}\right)^{2} e^{-j \Omega T} e^{j \tan ^{-1} \Omega T} \tag{A}
\end{equation*}
$$

plot of the magnitude responses of the zero-order hold and the first-order hold is shown below:

4.37 From the input-output relation of thelinear interpolator, we get the expression for the impulse response as $h_{f}(t)=\delta(n T-T)+\frac{\delta(n T)-\delta(n T-T)}{T}(t-n T), n T \leq t<(n+1) T$. In the range $0 \leq t<T$, the impulse response is given by $h_{f}(t)=\delta(-T)+\frac{\delta(0)-\delta(-T)}{T} t$. Likewise,
in the range $T \leq t<2 T$, the impulse response is given by $h_{f}(t)=\delta(0)+\frac{\delta(T)-\delta(0)}{T}(t-T)$.
$\left\{\begin{array}{cl}\frac{t}{T}, & 0 \leq t<T,\end{array}\right.$

0 , otherwise.

Using the step function we can write

$$
\begin{aligned}
& h_{f}(t)=\frac{t}{T}[\mu(t)-\mu(t-T)]+\left(2-\frac{t}{T}\right)[\mu(t-T)-\mu(t-2 T)] \\
& \quad=\frac{t}{T} \mu(t)-\frac{2(t-T)}{T} \mu(t-T)+\frac{(t-2 T)}{T} \mu(t-2 T)
\end{aligned}
$$

Taking the Laplace transform of the above equation we arrive at the transfer function
$H_{f}(s)=\frac{1}{s^{2} T}-\frac{2 e^{-s T}}{s^{2} T}+\frac{e^{-2 s T}}{s^{2} T}=T\left(\frac{1-e^{-s T}}{s T}\right)^{2}$. Hence, the frequency response is given
by $H_{f}(j \Omega)=T\left(\frac{1-e^{-j \Omega T}}{j \Omega T}\right)^{2}=T\left(\frac{\sin (\Omega T / 2)}{\Omega T / 2}\right)^{2} e^{-j \Omega T}$. A plot of the magnitude
responses of the ideal filter, zero-order hold and the first-order hold is shown below:

M4.1 We use $N=4$ and $W n=18365.512865$ computed in Problem 4.22 and use omega $=0: 2^{*} \mathrm{pi}: 2^{*} \mathrm{pi} * 10000$; to evaluate the frequency points. The gain plot obtained using Program 4_2 is shown below.

M4.2 We use $N=3$ computed in Problem 4.23 and $F p=2 * p i * 1500$ and $R p=0.25$ and use omega $=0: 2^{*}$ pi: $2^{*} \mathrm{pi}^{*} 10000$; to evaluate the frequency points. The gain plot obtained using Program 4_3 is shown below.

M4.3 We replace the statement

$$
\begin{aligned}
& \mathrm{Fp}=\text { input('Passband edge frequency in } \mathrm{Hz}=\text { '); with } \\
& \mathrm{Fs}=\text { input('Stopband edge frequency in } \mathrm{Hz}=\text { '); replace } \\
& \mathrm{Rp}=\text { input('Passband ripple in } d B=\text { '); }
\end{aligned}
$$

with Rs = input('Minimum stopband attenuation in $d B=$ '); and replace [num,den] = cheby1 ($\mathrm{N}, \mathrm{Rp}, \mathrm{Fp}, \mathrm{s} \mathrm{s}^{\prime}$); with [num,den] = cheby2 (N,Rs,Fs,'s') ; to modify Program 4_3.
Next, we run the modified program using $\mathrm{N}=3$ and $\mathrm{Rs}=25$, and $\mathrm{Fs}=2 * \mathrm{pi} * 6000$. The gain response plot generated by the modified program is shown below.

The numerator and the denominator coefficients of the $3^{\text {rd }}$ order Type 2 Chebyshev lowpass filter can be obtained by typing num and den in the command window:

$$
H_{L P}(s)=\frac{10138.1864 s^{2}+4.8663294 \times 10^{10}}{s^{3}+7030.255525 s^{2}+2.4198332254 \times 10^{7} s+4.8663294 \times 10^{10}} .
$$

M4.4 We use $N=3$ and $W n=9424.777960769379$ computed in Problem 4.26 in Program 4_4 and use omega $=[0: 200: 12000 *$ pi $]$; to evaluate the frequency points. The gain plot generated by running this program is shown below:

M4.5 The MATLAB program used is as given below:

```
[N,Wn]=buttord(1,13/3,0.5, 40, 's');
[B,A] = butter(N,Wn,'s');
[num,den]=lp2hp(B,A,2*pi*6500);
figure(1)
[h,w]=freqs(B,A);gain = 20*log10(abs(h));
plot(w,gain);grid
xlabel('\Omega');ylabel('Gain, dB');
title('Analog Lowpass Filter');
figure(2)
[h,w]=freqs(num,den);gain = 20*log10(abs(h));
plot(w/(2*pi),gain);grid
xlabel('Frequency, Hz');ylabel('Gain, dB');
title('Analog Highpass Filter');
```

$$
\begin{aligned}
& H_{L P}(s)=\frac{3.5262257}{s^{4}+3.58086432 s^{3}+6.41129464 \mathrm{~s}^{2}+6.72423556 \mathrm{~s}+3.5262257}, \\
& H_{H P}(s)=\frac{s^{4}}{s^{4}+7.7880 s^{3}+3.0326485 \times 10^{9} s^{2}+6.91763168 \times 10^{13} s+7.8897418 \times 10^{17}} .
\end{aligned}
$$

M4.6 The MATLAB program used is given below:
[N, Wn] = ellipord(1,1.28,0.25,50,'s'); [B,A] = ellip(N,0.25,50,Wn,'s'); [num,den] = lp2bp(B,A,2*pi*30e3,2*pi*25e3);
figure (1)
omega = [0:0.01:10];
$h=$ freqs (B,A, omega);
gain $=20 * \log 10(a b s(h))$;
plot(omega,gain); grid; axis([0 5 -80 5]);
xlabel('\Omega'); ylabel('Gain, dB');
title('Analog Lowpass Filter');
figure(2)
omega $=$ [0:200:100e3*2*pi];
h = freqs (num,den,omega);
gain = 20*log10(abs(h));
plot(omega/(2*pi), gain); grid; axis([0 60e3 -80 5]); xlabel('Frequency in Hz'); ylabel('Gain, dB'); title('Analog Bandpass Filter');

The numerator and denominator coefficients of can be obtained by typing num and den in the Command Window.

M4.7 The MATLAB program used is given below:

```
[N,Wn] = cheb1ord(0.3157894, 1, 0.5, 30,'s');
[B,A] = cheby1(N,0.5, Wn,'s');
[num,den] = lp2bs(B,A,2*pi*sqrt(700)*10^6, 2*pi*15e6);
figure(1)
omega = [0:0.01:10];
h = freqs(B,A,omega);
gain = 20*log10(abs(h));
plot(omega, gain); grid; axis([0 4 -70 5]);
xlabel('\Omega'); ylabel('Gain, dB');
title('Analog Lowpass Filter');
figure(2)
omega = [0:10000:160e6*pi];
h = freqs (num,den,omega);
gain = 20*log10(abs(h));
plot(omega/(2*pi), gain); grid; axis([0 80e6 -70 5]);
xlabel('Frequency in Hz'); ylabel('Gain, dB');
title('Analog Bandstop Filter');
```

$$
H_{L P}(s)=\frac{0.02253823}{s^{3}+0.3956566 \mathrm{~s}^{2}+0.1530643 \mathrm{~s}+0.02253823} .
$$

M4.8 The MATLAB program to generate the plots of Figure 4.56 is given below:

```
% Droop Compensation
w = 0:pi/100:pi;
h1 = freqz([-1/16 9/8 -1/16],1,w);
h2 = freqz(9, [8 1], w);
w1 = 0;
for n = 1:101;
    h3(n) = sin(w1/2)/(w1/2);
    w1 = w1 + pi/100;
end
m1 = 20*log10(abs(h1));
m2 = 20*log10(abs(h2));
m3 = 20*log10(abs(h3));
plot(w/pi,m3,'-',w/pi,m1+m2,'--',w/pi,m2+m3,'-.') ; grid
xlabel('Normalized frequency');ylabel(Gain, dB');
```

