DTFT Properties

- Example - Determine the DTFT $Y\left(e^{j \omega}\right)$ of

$$
y[n]=(n+1) \alpha^{n} \mu[n],|\alpha|<1
$$

- Let $x[n]=\alpha^{n} \mu[n],|\alpha|<1$
- We can therefore write

$$
y[n]=n x[n]+x[n]
$$

- From Table 3.1, the DTFT of $x[n]$ is given

$$
X\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}
$$

DTFT Properties

- Using the differentiation property of the DTFT given in Table 3.2, we observe that the DTFT of $n x[n]$ is given by

$$
j \frac{d X\left(e^{j \omega}\right)}{d \omega}=j \frac{d}{d \omega}\left(\frac{1}{1-\alpha e^{-j \omega}}\right)=\frac{\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}}
$$

- Next using the linearity property of the DTFT given in Table 3.2 we arrive at

$$
Y\left(e^{j \omega}\right)=\frac{\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}}+\frac{1}{1-\alpha e^{-j \omega}}=\frac{1}{\left(1-\alpha e^{-j \omega}\right)^{2}}
$$

DTFT Properties

- Example - Determine the DTFT $V\left(e^{j \omega}\right)$ of the sequence $v[n]$ defined by

$$
d_{0} v[n]+d_{1} v[n-1]=p_{0} \delta[n]+p_{1} \delta[n-1]
$$

- From Table 3.1, the DTFT of $\delta[n]$ is 1
- Using the time-shifting property of the DTFT given in Table 3.2 we observe that the DTFT of $\delta[n-1]$ is $e^{-j \omega}$ and the DTFT of $v[n-1]$ is $e^{-j \omega} V\left(e^{j \omega}\right)$

DTFT Properties

- Using the linearity property of Table 3.2 we then obtain the frequency-domain representation of

$$
d_{0} v[n]+d_{1} v[n-1]=p_{0} \delta[n]+p_{1} \delta[n-1]
$$

as

$$
d_{0} V\left(e^{j \omega}\right)+d_{1} e^{-j \omega} V\left(e^{j \omega}\right)=p_{0}+p_{1} e^{-j \omega}
$$

- Solving the above equation we get

$$
V\left(e^{j \omega}\right)=\frac{p_{0}+p_{1} e^{-j \omega}}{d_{0}+d_{1} e^{-j \omega}}
$$

Energy Density Spectrum

- The total energy of a finite-energy sequence $g[n]$ is given by

$$
\mathrm{E}_{g}=\sum_{n=-\infty}^{\infty}|g[n]|^{2}
$$

- From Parseval's relation given in Table 3.2 we observe that

$$
\mathrm{E}_{g}=\sum_{n=-\infty}^{\infty}|g[n]|^{2}=\left.\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(e^{j \omega}\right)\right|^{2} d \omega
$$

Energy Density Spectrum

- The quantity

$$
S_{g g}(\omega)=\left|G\left(e^{j \omega}\right)\right|^{2}
$$

is called the energy density spectrum

- The area under this curve in the range $-\pi \leq \omega \leq \pi$ divided by 2π is the energy of the sequence

Energy Density Spectrum

- Example - Compute the energy of the sequence

$$
h_{L P}[n]=\frac{\sin \omega_{c} n}{\pi n},-\infty<n<\infty
$$

- Here

$$
\sum_{n=-\infty}^{\infty}\left|h_{L P}[n]\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|H_{L P}\left(e^{j \omega}\right)\right|^{2} d \omega
$$

where

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}1, & 0 \leq|\omega| \leq \omega_{c} \\ 0, & \omega_{c}<|\omega| \leq \pi\end{cases}
$$

Energy Density Spectrum

- Therefore

$$
\sum_{n=-\infty}^{\infty} h_{L P}[n]^{2}=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} d \omega=\frac{\omega_{c}}{\pi}<\infty
$$

- Hence, $h_{L P}[n]$ is a finite-energy sequence

DTFT Computation Using MATLAB

- The function freqz can be used to compute the values of the DTFT of a sequence, described as a rational function in in the form of

$$
X\left(e^{j \omega}\right)=\frac{p_{0}+p_{1} e^{-j \omega}+\ldots .+p_{M} e^{-j \omega M}}{d_{0}+d_{1} e^{-j \omega}+\ldots .+d_{N} e^{-j \omega N}}
$$

at a prescribed set of discrete frequency points $\omega=\omega_{\ell}$

DTFT Computation Using MATLAB

- For example, the statement H = freqz (num, den, w) returns the frequency response values as a vector H of a DTFT defined in terms of the vectors num and den containing the coefficients $\left\{p_{i}\right\}$ and $\left\{d_{i}\right\}$, respectively at a prescribed set of frequencies between 0 and 2π given by the vector w

DTFT Computation Using MATLAB

- There are several other forms of the function freqz
- The Program 3_1 in the text can be used to compute the values of the DTFT of a real sequence
- It computes the real and imaginary parts, and the magnitude and phase of the DTFT

DTFT Computation Using MATLAB

- Example - Plots of the real and imaginary parts, and the magnitude and phase of the DTFT

$$
X\left(e^{j \omega}\right)=\frac{\begin{array}{c}
0.008-0.033 e^{-j \omega}+0.05 e^{-j 2 \omega} \\
-0.033 e^{-j 3 \omega}+0.008 e^{-j 4 \omega}
\end{array}}{1+2.37 e^{-j \omega}+2.7 e^{-j 2 \omega}}+1.6 e^{-j 3 \omega}+0.41 e^{-j 4 \omega}
$$

are shown on the next slide

DTFT Computation Using MATLAB

Magnitude Spectrum

Real part

Phase Spectrum

DTFT Computation Using MATLAB

- Note: The phase spectrum displays a discontinuity of 2π at $\omega=0.72$
- This discontinuity can be removed using the function unwrap as indicated below

Linear Convolution Using DTFT

- An important property of the DTFT is given by the convolution theorem in Table 3.2
- It states that if $y[n]=x[n] * h[n]$, then the DTFT $Y\left(e^{j \omega}\right)$ of $y[n]$ is given by

$$
Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)
$$

- An implication of this result is that the linear convolution $y[n]$ of the sequences $x[n]$ and $h[n]$ can be performed as follows:

Linear Convolution Using DTFT

- 1) Compute the DTFTs $X\left(e^{j \omega}\right)$ and $H\left(e^{j \omega}\right)$ of the sequences $x[n]$ and $h[n]$, respectively
- 2) Form the DTFT $Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$
- 3) Compute the IDFT $y[n]$ of $Y\left(e^{j \omega}\right)$

Discrete Fourier Transform

- Definition - The simplest relation between a length- N sequence $x[n]$, defined for $0 \leq n \leq N-1$, and its DTFT $X\left(e^{j \omega}\right)$ is obtained by uniformly sampling $X\left(e^{j \omega}\right)$ on the ω-axis between $0 \leq \omega \leq 2 \pi$ at $\omega_{k}=2 \pi k / N$, $0 \leq k \leq N-1$
- From the definition of the DTFT we thus have

$$
X[k]=X\left(e^{j \omega}\right)_{\omega=2 \pi k / N}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k / N},
$$

$$
0 \leq k \leq N-1
$$

Discrete Fourier Transform

- Note: $X[k]$ is also a length- N sequence in the frequency domain
- The sequence $X[k]$ is called the discrete Fourier transform (DFT) of the sequence $x[n]$
- Using the notation $W_{N}=e^{-j 2 \pi / N}$ the DFT is usually expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, 0 \leq k \leq N-1
$$

Discrete Fourier Transform

- The inverse discrete Fourier transform (IDFT) is given by

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, 0 \leq n \leq N-1
$$

- To verify the above expression we multiply both sides of the above equation by $W_{N}^{\ell n}$ and sum the result from $n=0$ to $n=N-1$

Discrete Fourier Transform

 resulting in$$
\begin{aligned}
\sum_{n=0}^{N-1} x[n] W_{N}^{\ell n} & =\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}\right) W_{N}^{\ell n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} X[k] W_{N}^{-(k-\ell) n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} X[k] W_{N}^{-(k-\ell) n}
\end{aligned}
$$

Discrete Fourier Transform

- Making use of the identity

$$
\sum_{n=0}^{N-1} W_{N}^{-(k-\ell) n}=\left\{\begin{array}{l}
N, \text { for } k-\ell=r N, r \text { an integer } \\
0, \text { otherwise }
\end{array}\right.
$$

we observe that the RHS of the last equation is equal to $X[\ell]$

- Hence

$$
\sum_{n=0}^{N-1} x[n] W_{N}^{\ell n}=X[\ell]
$$

Discrete Fourier Transform

- Example - Consider the length $-N$ sequence

$$
x[n]=\left\{\begin{array}{lc}
1, & n=0 \\
0, & 1 \leq n \leq N-1
\end{array}\right.
$$

- Its N-point DFT is given by

$$
\begin{array}{r}
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=x[0] W_{N}^{0}=1 \\
0 \leq k \leq N-1
\end{array}
$$

Discrete Fourier Transform

- Example - Consider the length $-N$ sequence

$$
y[n]=\left\{\begin{array}{cc}
1, & n=m \\
0, & 0 \leq n \leq m-1, m+1 \leq n \leq N-1
\end{array}\right.
$$

- Its N-point DFT is given by

$$
\begin{array}{r}
Y[k]=\sum_{n=0}^{N-1} y[n] W_{N}^{k n}=y[m] W_{N}^{k m}=W_{N}^{k m} \\
0 \leq k \leq N-1
\end{array}
$$

Discrete Fourier Transform

- Example - Consider the length $-N$ sequence defined for $0 \leq n \leq N-1$

$$
g[n]=\cos (2 \pi r n / N), \quad 0 \leq r \leq N-1
$$

- Using a trigonometric identity we can write

$$
\begin{aligned}
g[n] & =\frac{1}{2}\left(e^{j 2 \pi r n / N}+e^{-j 2 \pi r n / N}\right) \\
& =\frac{1}{2}\left(W_{N}^{-r N}+W_{N}^{r N}\right)
\end{aligned}
$$

Discrete Fourier Transform

- The N-point DFT of $g[n]$ is thus given by

$$
\begin{aligned}
G[k] & =\sum_{n=0}^{N-1} g[n] W_{N}^{k n} \\
& =\frac{1}{2}\left(\sum_{n=0}^{N-1} W_{N}^{-(r-k) n}+\sum_{n=0}^{N-1} W_{N}^{(r+k) n}\right),
\end{aligned}
$$

$$
0 \leq k \leq N-1
$$

Discrete Fourier Transform

- Making use of the identity
$\sum_{n=0}^{N-1} W_{N}^{-(k-\ell) n}=\left\{\begin{array}{l}N, \text { for } k-\ell=r N, r \text { an integer } \\ 0, \text { otherwise }\end{array}\right.$ we get

$$
G[k]=\left\{\begin{array}{cl}
N / 2, & \text { for } k=r \\
N / 2, & \text { for } k=N-r \\
0, & \text { otherwise }
\end{array}\right.
$$

$$
0 \leq k \leq N-1
$$

Matrix Relations

- The DFT samples defined by

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad 0 \leq k \leq N-1
$$

can be expressed in matrix form as

$$
\mathbf{X}=\mathbf{D}_{N} \mathbf{x}
$$

where

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{llll}
X[0] & X[1] & \cdots \cdots & X[N-1]
\end{array}\right]^{T} \\
& \mathbf{x}=\left[\begin{array}{llll}
x[0] & x[1] & \cdots \cdots & x[N-1
\end{array}\right]^{T}
\end{aligned}
$$

Matrix Relations

and \mathbf{D}_{N} is the $N \times N$ DFT matrix given by

$$
\mathbf{D}_{N}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{(N-1)} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)^{2}}
\end{array}\right]
$$

Matrix Relations

- Likewise, the IDFT relation given by

$$
x[n]=\sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, 0 \leq n \leq N-1
$$

can be expressed in matrix form as

$$
\mathbf{x}=\mathbf{D}_{N}^{-1} \mathbf{X}
$$

where \mathbf{D}_{N}^{-1} is the $N \times N$ IDFT matrix

Matrix Relations

where

- Note:

$$
\mathbf{D}_{N}^{-1}=\frac{1}{N} \mathbf{D}_{N}^{*}
$$

DFT Computation Using MATLAB

- The functions to compute the DFT and the IDFT are fft and ifft
- These functions make use of FFT algorithms which are computationally highly efficient compared to the direct computation
- Programs 3_2 and 3_4 illustrate the use of these functions

DFT Computation Using MATLAB

- Example - Program 3_4 can be used to compute the DFT and the DTFT of the sequence

$$
x[n]=\cos (6 \pi n / 16), \quad 0 \leq n \leq 15
$$

as shown below

- indicates DFT samples

DTFT from DFT by Interpolation

- The N-point DFT $X[k]$ of a length- N sequence $x[n]$ is simply the frequency samples of its DTFT $X\left(e^{j \omega}\right)$ evaluated at N uniformly spaced frequency points

$$
\omega=\omega_{k}=2 \pi k / N, \quad 0 \leq k \leq N-1
$$

- Given the N-point DFT $X[k]$ of a length- N sequence $x[n]$, its DTFT $X\left(e^{j \omega}\right)$ can be uniquely determined from $X[k]$

DTFT from DFT by Interpolation

- Thus

$$
X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}
$$

$$
=\sum_{n=0}^{N-1}\left[\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}\right] e^{-j \omega n}
$$

$$
=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \sum_{n=0}^{N-1} e^{-j(\omega-2 \pi k / N) n}
$$

DTFT from DFT by Interpolation

- To develop a compact expression for the sum S , let

$$
=\sum_{n=1}^{N \neq} \underset{\sim}{e-j(\omega-2 \pi k / N)}+r^{N}-1=S+r^{N}-1
$$

- Then $\mathrm{S}=\sum_{n=0}^{N-1} r^{n}$
- From the above

$$
\begin{aligned}
r \mathrm{~S} & =\sum_{n=1}^{N} r^{n}=1+\sum_{n=1}^{N-1} r^{n}+r^{N}-1 \\
& =\sum_{n=1}^{N-1} r^{n}+r^{N}-1=S+r^{N}-1
\end{aligned}
$$

DTFT from DFT by Interpolation

- Or, equivalently,

$$
\mathrm{S}-r \mathrm{~S}=(1-r) \mathrm{S}=1-r^{N}
$$

- Hence

$$
\begin{aligned}
\mathrm{S} & =\frac{1-r^{N}}{1-r}=\frac{1-e^{-j(\omega N-2 \pi k)}}{1-e^{-j[\omega-(2 \pi k / N)]}} \\
& =\frac{\sin \left(\frac{\omega N-2 \pi k}{2}\right)}{\sin \left(\frac{\omega N-2 \pi k}{2 N}\right)} \cdot e^{-j[(\omega-2 \pi k / N)][(N-1) / 2]}
\end{aligned}
$$

DTFT from DFT by Interpolation

- Therefore

$$
\begin{aligned}
& X\left(e^{j \omega}\right) \\
= & \frac{1}{N} \sum_{k=0}^{N-1} X[k] \frac{\sin \left(\frac{\omega N-2 \pi k}{2}\right)}{\sin \left(\frac{\omega N-2 \pi k}{2 N}\right)} \cdot e^{-j[(\omega-2 \pi k / N)][(N-1) / 2]}
\end{aligned}
$$

Sampling the DTFT

- Consider a sequence $x[n]$ with a DTFT $X\left(e^{j \omega}\right)$
- We sample $X\left(e^{j \omega}\right)$ at N equally spaced points $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$ developing the N frequency samples $\left\{X\left(e^{j \omega_{k}}\right)\right\}$
- These N frequency samples can be considered as an N-point DFT $Y[k]$ whose N point IDFT is a length N sequence $y[n]$

Sampling the DTFT

- Now $X\left(e^{j \omega}\right)=\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j \omega \ell}$
- Thus $Y[k]=X\left(e^{j \omega_{k}}\right)=X\left(e^{j 2 \pi k / N}\right)$

$$
=\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j 2 \pi k \ell \prime N}=\sum_{\ell=-\infty}^{\infty} x[\ell] W_{N}^{k \ell}
$$

- An IDFT of $Y[k]$ yields

$$
y[n]=\frac{1}{N} \sum_{k=0}^{N-1} Y[k] W_{N}^{-k n}
$$

Sampling the DTFT

- i.e. $y[n]=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{\ell=-\infty}^{\infty} x[\ell] W_{N}^{k \ell} W_{N}^{-k n}$

$$
=\sum_{\ell=-\infty}^{\infty} x[\ell]\left[\frac{1}{N} \sum_{k=0}^{N-1} W_{N}^{-k(n-\ell)}\right]
$$

- Making use of the identity

$$
\frac{1}{N} \sum_{n=0}^{N-1} W_{N}^{-k(n-r)}=\left\{\begin{array}{l}
1, \text { for } r=n+m N \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Sampling the DTFT

 we arrive at the desired relation$$
y[n]=\sum_{m=-\infty}^{\infty} x[n+m N], \quad 0 \leq n \leq N-1
$$

- Thus $y[n]$ is obtained from $x[n]$ by adding an infinite number of shifted replicas of $x[n]$, with each replica shifted by an integer multiple of N sampling instants, and observing the sum only for the interval $0 \leq n \leq N-1$

Sampling the DTFT

- To apply

$$
y[n]=\sum_{m=-\infty}^{\infty} x[n+m N], \quad 0 \leq n \leq N-1
$$

to finite-length sequences, we assume that the samples outside the specified range are zeros

- Thus if $x[n]$ is a length- M sequence with $M \leq N$, then $y[n]=x[n]$ for $0 \leq n \leq N-1$

Sampling the DTFT

- If $M>N$, there is a time-domain aliasing of samples of $x[n]$ in generating $y[n]$, and $x[n]$ cannot be recovered from $y[n]$
- Example - Let $\{x[n]\}=\left\{\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\right\}$
- By sampling its DTFT $X\left(e^{j \omega}\right)$ at $\omega_{k}=2 \pi k / 4$, $0 \leq k \leq 3$ and then applying a 4 -point IDFT to these samples, we arrive at the sequence $y[n]$ given by

Sampling the DTFT

$$
y[n]=x[n]+x[n+4]+x[n-4], 0 \leq n \leq 3
$$

- i.e.

$$
\{y[n]\}=\underset{\uparrow}{4} \quad 6 \quad 2 \quad 3\}
$$

$\{x[n]\}$ cannot be recovered from $\{y[n]\}$

Numerical Computation of the DTFT Using the DFT

- A practical approach to the numerical computation of the DTFT of a finite-length sequence
- Let $X\left(e^{j \omega}\right)$ be the DTFT of a length- N sequence $x[n]$
- We wish to evaluate $X\left(e^{j \omega}\right)$ at a dense grid of frequencies $\omega_{k}=2 \pi k / M, 0 \leq k \leq M-1$, where $M \gg N$:

Numerical Computation of the DTFT Using the DFT

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega_{k} n}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / M}
$$

- Define a new sequence

$$
x_{e}[n]=\left\{\begin{array}{cc}
x[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq M-1
\end{array}\right.
$$

- Then

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x[n] e^{-j 2 \pi k n / M}
$$

Numerical Computation of the

 DTFT Using the DFT- Thus $X\left(e^{j \omega_{k}}\right)$ is essentially an M-point DFT $X_{e}[k]$ of the length $-M$ sequence $x_{e}[n]$
- The DFT $X_{e}[k]$ can be computed very efficiently using the FFT algorithm if M is an integer power of 2
- The function freqz employs this approach to evaluate the frequency response at a prescribed set of frequencies of a DTFT expressed as a rational function in $e^{-j \omega}$

DFT Properties

- Like the DTFT, the DFT also satisfies a number of properties that are useful in signal processing applications
- Some of these properties are essentially identical to those of the DTFT, while some others are somewhat different
- A summary of the DFT properties are given in tables in the following slides

Table 3.5: General Properties of DFT

Type of Property	Length- N Sequence	N-point DFT
$g[n]$ $h[n]$	$G[k]$	
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G[k]+\beta H[k]$
Circular time-shifting frequency-shifting Duality	$g\left[\left\langle n-n_{o}\right\rangle_{N}\right]$	$W_{N}^{k n_{o}} G[k]$
N-point circular		
convolution		
Modulation	$\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N} n\right]$	$G[n]$
	$g[n] h[n]$	$N g\left[\langle-k\rangle_{N}\right]$
		$G[k] H[k]$
		k_{o}

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^{2}
$$

Parseval's relation

1, S. K. Mitra

Table 3.6: DFT Properties: Symmetry Relations

Length- N Sequence	N-point DFT
$x[n]$	$X[k]$
$x^{*}[n]$	$X^{*}\left[\{-k)_{N}\right]$
$x^{*}\left[\{-n\rangle_{N}\right]$	$X^{*}[k]$
$\operatorname{Rej}[x[n]\}$	$\left.X_{\text {pcs }}[k]=\frac{1}{2}\left\{X[k)_{N}\right]+X^{*}\left[\{-k)_{N}\right]\right\}$
$j \operatorname{Im}\{x[n]\}$	$X_{\text {pca }}[k]=\frac{1}{2}\left\{X\left[\langle k)_{N}\right]-X^{*}\left[\{-k\rangle_{N}\right]\right\}$
$x_{\text {pcs }}[n]$	$\operatorname{Re}\{X[k]\}$
$x_{\text {pca }}[n]$	$j \operatorname{Im}\{X[k]\}$

Note: $x_{\text {pcs }}[n]$ and $x_{\text {pca }}[n]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of $x[n]$, respectively. Likewise, $X_{\text {pcs }}[k]$ and $X_{\text {pca }}[k]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of $X[k]$, respectively.

Table 3.7: DFT Properties: Symmetry Relations

Length- N Sequence	N-point DFT
$x[n]$	$X[k]=\operatorname{Re}\{X[k]\}+j \operatorname{Im}\{X[k]\}$
$x_{\mathrm{pe}}[n]$	
$x_{\mathrm{po}}[n]$	$\operatorname{Re}\{X[k]\}$
$j \operatorname{lm}\{X[k]\}$	
	$X[k]=X^{*}\left[\langle-k\rangle_{N}\right]$
$\operatorname{Re} X[k]=\operatorname{Re} X\left[\langle-k\rangle_{N}\right]$	
$\operatorname{Im} X[k]=-\operatorname{Im} X\left[\langle-k\rangle_{N}\right]$	
$\|X[k]\|=\left\|X\left[\langle-k\rangle_{N}\right]\right\|$	
$\arg X[k]=-\arg X\left[\langle-k\rangle_{N}\right]$	

Note: $x_{\mathrm{pe}}[n]$ and $x_{\mathrm{po}}[n]$ are the periodic even and periodic odd parts of $x[n]$, respectively.

Circular Shift of a Sequence

- This property is analogous to the timeshifting property of the DTFT as given in Table 3.2, but with a subtle difference
- Consider length- N sequences defined for

$$
0 \leq n \leq N-1
$$

- Sample values of such sequences are equal to zero for values of $n<0$ and $n \geq N$

Circular Shift of a Sequence

- If $x[n]$ is such a sequence, then for any arbitrary integer n_{o}, the shifted sequence

$$
x_{1}[n]=x\left[n-n_{o}\right]
$$

is no longer defined for the range $0 \leq n \leq N-1$

- We thus need to define another type of a shift that will always keep the shifted sequence in the range $0 \leq n \leq N-1$

Circular Shift of a Sequence

- The desired shift, called the circular shift, is defined using a modulo operation:

$$
x_{c}[n]=x\left[\left\langle n-n_{o}\right\rangle_{N}\right]
$$

- For $n_{o}>0$ (right circular shift), the above equation implies

$$
x_{c}[n]=\left\{\begin{array}{c}
x\left[n-n_{o}\right], \quad \text { for } n_{o} \leq n \leq N-1 \\
x\left[N-n_{o}+n\right], \quad \text { for } 0 \leq n<n_{o}
\end{array}\right.
$$

Circular Shift of a Sequence

- Illustration of the concept of a circular shift

$$
=x\left[\langle n+2\rangle_{6}\right]
$$

Circular Shift of a Sequence

- As can be seen from the previous figure, a right circular shift by n_{o} is equivalent to a left circular shift by $N-n_{o}$ sample periods
- A circular shift by an integer number n_{o} greater than N is equivalent to a circular shift by $\left\langle n_{o}\right\rangle_{N}$

Circular Convolution

- This operation is analogous to linear convolution, but with a subtle difference
- Consider two length $-N$ sequences, $g[n]$ and $h[n]$, respectively
- Their linear convolution results in a length$(2 N-1)$ sequence $y_{L}[n]$ given by

$$
y_{L}[n]=\sum_{m=0}^{N-1} g[m] h[n-m], \quad 0 \leq n \leq 2 N-2
$$

Circular Convolution

- In computing $y_{L}[n]$ we have assumed that both length- N sequences have been zeropadded to extend their lengths to $2 N-1$
- The longer form of $y_{L}[n]$ results from the time-reversal of the sequence $h[n]$ and its linear shift to the right
- The first nonzero value of $y_{L}[n]$ is $y_{L}[0]=g[0] h[0]$, and the last nonzero value is $y_{L}[2 N-2]=g[N-1] h[N-1]$

Circular Convolution

- To develop a convolution-like operation resulting in a length $-N$ sequence $y_{C}[n]$, we need to define a circular time-reversal, and then apply a circular time-shift
- Resulting operation, called a circular convolution, is defined by

$$
y_{C}[n]=\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N}\right], \quad 0 \leq n \leq N-1
$$

Circular Convolution

- Since the operation defined involves two length $-N$ sequences, it is often referred to as an N-point circular convolution, denoted as

$$
y[n]=g[n] \otimes h[n]
$$

- The circular convolution is commutative, i.e.

$$
g[n] \oplus h[n]=h[n] \otimes g[n]
$$

Circular Convolution

- Example - Determine the 4-point circular convolution of the two length- 4 sequences:

$$
\begin{aligned}
& \{g[n]\}=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\},\{h[n]\}=\left\{\begin{array}{llll}
2 & 2 & 1 & 1
\end{array}\right\} \\
& \uparrow \\
& \uparrow
\end{aligned}
$$

as sketched below

Circular Convolution

- The result is a length -4 sequence $y_{C}[n]$ given by

$$
\begin{array}{rr}
y_{C}[n]=g[n](4) h[n]=\sum_{m=0}^{3} g[m] h\left[\langle n-m\rangle_{4}\right] \\
& 0 \leq n \leq 3
\end{array}
$$

- From the above we observe

$$
\begin{aligned}
y_{C}[0] & =\sum_{m=0}^{3} g[m] h\left[\langle-m\rangle_{4}\right] \\
& =g[0] h[0]+g[1] h[3]+g[2] h[2]+g[3] h[1] \\
& =(1 \times 2)+(2 \times 1)+(0 \times 1)+(1 \times 2)=6
\end{aligned}
$$

Circular Convolution

- Likewise $y_{C}[1]=\sum_{m=0}^{3} g[m] h\left[\langle 1-m\rangle_{4}\right]$

$$
\begin{aligned}
& =g[0] h[1]+g[1] h[0]+g[2] h[3]+g[3] h[2] \\
& =(1 \times 2)+(2 \times 2)+(0 \times 1)+(1 \times 1)=7
\end{aligned}
$$

$$
\begin{aligned}
y_{C}[2] & =\sum_{m=0}^{3} g[m] h\left[\langle 2-m\rangle_{4}\right] \\
& =g[0] h[2]+g[1] h[1]+g[2] h[0]+g[3] h[3] \\
& =(1 \times 1)+(2 \times 2)+(0 \times 2)+(1 \times 1)=6
\end{aligned}
$$

Circular Convolution

$$
\begin{aligned}
& \text { and } \begin{aligned}
y_{C}[3] & =\sum_{m=0}^{3} g[m] h\left[\langle 3-m\rangle_{4}\right] \\
& =g[0] h[3]+g[1] h[2]+g[2] h[1]+g[3] h[0] \\
& =(1 \times 1)+(2 \times 1)+(0 \times 2)+(1 \times 2)=5
\end{aligned}
\end{aligned}
$$

$$
y_{C}[n]
$$

- The circular convolution can also be computed using a DFT-based approach as

Circular Convolution

- Example - Consider the two length-4 sequences repeated below for convenience:

- The 4-point DFT $G[k]$ of $g[n]$ is given by

$$
\begin{aligned}
G[k]= & g[0]+g[1] e^{-j 2 \pi k / 4} \\
& +g[2] e^{-j 4 \pi k / 4}+g[3] e^{-j 6 \pi k / 4} \\
= & 1+2 e^{-j \pi k / 2}+e^{-j 3 \pi k / 2}, \quad 0 \leq k \leq 3
\end{aligned}
$$

Circular Convolution

- Therefore $G[0]=1+2+1=4$,

$$
\begin{aligned}
G[1] & =1-j 2+j=1-j, \\
G[2] & =1-2-1=-2, \\
G[3] & =1+j 2-j=1+j
\end{aligned}
$$

- Likewise,
$H[k]=h[0]+h[1] e^{-j 2 \pi k / 4}$

$$
\begin{aligned}
& +h[2] e^{-j 4 \pi k / 4}+h[3] e^{-j 6 \pi k / 4} \\
= & 2+2 e^{-j \pi k / 2}+e^{-j \pi k}+e^{-j 3 \pi k / 2}, 0 \leq k \leq 3
\end{aligned}
$$

Circular Convolution

- Hence, $H[0]=2+2+1+1=6$,

$$
\begin{aligned}
& H[1]=2-j 2-1+j=1-j, \\
& H[2]=2-2+1-1=0, \\
& H[3]=2+j 2-1-j=1+j
\end{aligned}
$$

- The two 4-point DFTs can also be computed using the matrix relation given earlier

Circular Convolution

$$
\begin{aligned}
& {\left[\begin{array}{l}
G[0] \\
G[1] \\
G[2] \\
G[3]
\end{array}\right]=\mathbf{D}_{4}\left[\begin{array}{l}
g[0] \\
g[1] \\
g[2] \\
g[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 \\
1-j \\
-2 \\
1+j
\end{array}\right]} \\
& {\left[\begin{array}{l}
H[0] \\
H[1] \\
H[2] \\
H[3]
\end{array}\right]=\mathbf{D}_{4}\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
1-j \\
0 \\
1+j
\end{array}\right]}
\end{aligned}
$$

\mathbf{D}_{4} is the 4-point DFT matrix

Circular Convolution

- If $Y_{C}[k]$ denotes the 4 -point DFT of $y_{C}[n]$ then from Table 3.5 we observe

$$
Y_{C}[k]=G[k] H[k], 0 \leq k \leq 3
$$

- Thus

$$
\left[\begin{array}{c}
Y_{C}[0] \\
Y_{C}[1] \\
Y_{C}[2] \\
Y_{C}[3]
\end{array}\right]=\left[\begin{array}{c}
G[0] H[0] \\
G[1] H[1] \\
G[2] H[2] \\
G[3] H[3]
\end{array}\right]=\left[\begin{array}{c}
24 \\
-j 2 \\
0 \\
j 2
\end{array}\right]
$$

Circular Convolution

- A 4-point IDFT of $Y_{C}[k]$ yields

$$
\left[\begin{array}{l}
y_{C}[0] \\
y_{C}[1] \\
y_{C}[2] \\
y_{C}[3]
\end{array}\right]=\frac{1}{4} \mathbf{D}_{4}^{*}\left[\begin{array}{c}
Y_{C}[0] \\
Y_{C}[1] \\
Y_{C}[2] \\
Y_{C}[3]
\end{array}\right]
$$

$$
=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{c}
24 \\
-j 2 \\
0 \\
j 2
\end{array}\right]=\left[\begin{array}{l}
6 \\
7 \\
6 \\
5
\end{array}\right]
$$

Circular Convolution

- Example - Now let us extended the two length- 4 sequences to length 7 by appending each with three zero-valued samples, i.e.

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right.
\end{aligned}
$$

Circular Convolution

- We next determine the 7-point circular convolution of $g_{e}[n]$ and $h_{e}[n]$:

$$
y[n]=\sum_{m=0}^{6} g_{e}[m] h_{e}\left[\langle n-m\rangle_{7}\right], \quad 0 \leq n \leq 6
$$

- From the above $y[0]=g_{e}[0] h_{e}[0]+g_{e}[1] h_{e}[6]$

$$
\begin{gathered}
+g_{e}[3] h_{e}[4]+g_{e}[4] h_{e}[3]+g_{e}[5] h_{e}[2]+g_{e}[6] h_{e}[1] \\
=g[0] h[0]=1 \times 2=2
\end{gathered}
$$

Circular Convolution

- Continuing the process we arrive at

$$
\begin{aligned}
y[1]= & g[0] h[1]+g[1] h[0]=(1 \times 2)+(2 \times 2)=6, \\
y[2]=g[0] h[2]+ & g[1] h[1]+g[2] h[0] \\
& =(1 \times 1)+(2 \times 2)+(0 \times 2)=5,
\end{aligned}
$$

$$
y[3]=g[0] h[3]+g[1] h[2]+g[2] h[1]+g[3] h[0]
$$

$$
=(1 \times 1)+(2 \times 1)+(0 \times 2)+(1 \times 2)=5 \text {, }
$$

$$
y[4]=g[1] h[3]+g[2] h[2]+g[3] h[1]
$$

$$
=(2 \times 1)+(0 \times 1)+(1 \times 2)=4
$$

Circular Convolution

$$
\begin{aligned}
& y[5]=g[2] h[3]+g[3] h[2]=(0 \times 1)+(1 \times 1)=1, \\
& y[6]=g[3] h[3]=(1 \times 1)=1
\end{aligned}
$$

- As can be seen from the above that $y[n]$ is precisely the sequence $y_{L}[n]$ obtained by a linear convolution of $g[n]$ and $h[n]$

Circular Convolution

- The N-point circular convolution can be written in matrix form as
$\left[\begin{array}{c}y_{C}[0] \\ y_{C}[1] \\ y_{C}[2] \\ \vdots \\ y_{C}[N-1]\end{array}\right]=\left[\begin{array}{ccccc}h[0] & h[N-1] & h[N-2] & \cdots & h[1] \\ h[1] & h[0] & h[N-1] & \cdots & h[2] \\ h[2] & h[1] & h[0] & \cdots & h[3] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h[N-1] & h[N-2] & h[N-3] & \cdots & h[0]\end{array}\right]\left[\begin{array}{c}g[0] \\ g[1] \\ g[2] \\ \vdots \\ g[N-1]\end{array}\right]$
- Note: The elements of each diagonal of the $N \times N$ matrix are equal
- Such a matrix is called a circulant matrix

