z-Transform

- The DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems
- Because of the convergence condition, in many cases, the DTFT of a sequence may not exist
- As a result, it is not possible to make use of such frequency-domain characterization in these cases

z-Transform

- A generalization of the DTFT defined by

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

leads to the z-transform

- z-transform may exist for many sequences for which the DTFT does not exist
- Moreover, use of z-transform techniques permits simple algebraic manipulations

z-Transform

- Consequently, z-transform has become an important tool in the analysis and design of digital filters
- For a given sequence $g[n]$, its z-transform $G(z)$ is defined as

$$
G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

where $z=\mathrm{R} \mathrm{e}(z)+\mathrm{j} \mathrm{l} \mathrm{m}(z)$ is a complex variable

z-Transform

- If we let $z=r e^{j \omega}$, then the z-transform reduces to

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}
$$

- The above can be interpreted as the DTFT of the modified sequence $\left\{g[n] r^{-n}\right\}$
- For $r=1$ (i.e., $|z|=1$), z-transform reduces to its DTFT, provided the latter exists

z-Transform

- The contour $|z|=1$ is a circle in the z-plane of unity radius and is called the unit circle
- Like the DTFT, there are conditions on the convergence of the infinite series

$$
\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

- For a given sequence, the set \mathcal{R} of values of z for which its z-transform converges is called the region of convergence (ROC)

z-Transform

- From our earlier discussion on the uniform convergence of the DTFT, it follows that the series

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}
$$

converges if $\left\{g[n] r^{-n}\right\}$ is absolutely
summable, i.e., if
$\sum_{n=-\infty}^{\infty}\left|g[n] r^{-n}\right|<\infty$

z-Transform

- In general, the ROC \mathcal{R} of a z-transform of a sequence $g[n]$ is an annular region of the z plane:

$$
R_{g^{-}}<|z|<R_{g^{+}}
$$

where $0 \leq R_{g^{-}}<R_{g^{+}} \leq \infty$

- Note: The z-transform is a form of a Laurent series and is an analytic function at every point in the ROC

z-Transform

- Example - Determine the z-transform $X(z)$ of the causal sequence $x[n]=\alpha^{n} \mu[n]$ and its ROC
- Now $X(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} \mu[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}$
- The above power series converges to

$$
X(z)=\frac{1}{1-\alpha z^{-1}}, \quad \text { for }\left|\alpha z^{-1}\right|<1
$$

- ROC is the annular region $|z|>|\alpha|$

z-Transform

- Example - The z-transform $\mu(z)$ of the unit step sequence $\mu[n]$ can be obtained from

$$
X(z)=\frac{1}{1-\alpha z^{-1}}, \quad \text { for }\left|\alpha z^{-1}\right|<1
$$

by setting $\alpha=1$:

$$
\mu(z)=\frac{1}{1-z^{-1}}, \quad \text { for }\left|z^{-1}\right|<1
$$

- ROC is the annular region $1<|z| \leq \infty$

z-Transform

- Note: The unit step sequence $\mu[n]$ is not absolutely summable, and hence its DTFT does not converge uniformly
- Example - Consider the anti-causal sequence

$$
y[n]=-\alpha^{n} \mu[-n-1]
$$

z-Transform

- Its z-transform is given by

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{-1}-\alpha^{n} z^{-n}=-\sum_{m=1}^{\infty} \alpha^{-m} z^{m} \\
& =-\alpha^{-1} z \sum_{m=0}^{\infty} \alpha^{-m} z^{m}=-\frac{\alpha^{-1} z}{1-\alpha^{-1} z} \\
& =\frac{1}{1-\alpha z^{-1}}, \text { for }\left|\alpha^{-1} z\right|<1
\end{aligned}
$$

- ROC is the annular region $|z|<|\alpha|$

z-Transform

- Note: The z-transforms of the two sequences $\alpha^{n} \mu[n]$ and $-\alpha^{n} \mu[-n-1]$ are identical even though the two parent sequences are different
- Only way a unique sequence can be associated with a z-transform is by specifying its ROC

z-Transform

- The DTFT $G\left(e^{j \omega}\right)$ of a sequence $g[n]$ converges uniformly if and only if the ROC of the z-transform $G(z)$ of $g[n]$ includes the unit circle
- The existence of the DTFT does not always imply the existence of the z-transform

z-Transform

- Example - The finite energy sequence

$$
h_{L P}[n]=\frac{\sin \omega_{c} n}{\pi n}, \quad-\infty<n<\infty
$$

has a DTFT given by

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}1, & 0 \leq \mid \omega \leq \omega_{c} \\ 0, & \omega_{c}<|\omega| \leq \pi\end{cases}
$$

which converges in the mean-square sense

z-Transform

- However, $h_{L P}[n]$ does not have a z-transform as it is not absolutely summable for any value of r
- Some commonly used z-transform pairs are listed on the next slide

Table 3.8: Commonly Used zTransform Pairs

Sequence
z-Transform
$\delta[n]$
1

$$
\begin{gathered}
\frac{1}{1-z^{-1}} \\
\frac{1}{1-\alpha z^{-1}}
\end{gathered}
$$

All values of z

$$
\begin{gathered}
|z|>1 \\
|z|>|\alpha|
\end{gathered}
$$

$$
\left(r^{n} \cos \omega_{o} n\right) \mu[n] \quad \frac{1-\left(r \cos \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}}
$$

$$
|z|>r
$$

$$
\left(r^{n} \sin \omega_{o} n\right) \mu[n] \quad \frac{\left(r \sin \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}}
$$

$$
|z|>r
$$

Rational z-Transforms

- In the case of LTI discrete-time systems we are concerned with in this course, all pertinent z-transforms are rational functions of z^{-1}
- That is, they are ratios of two polynomials in z^{-1} :
$G(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\cdots+p_{M-1} z^{-(M-1)}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\cdots \cdot+d_{N-1} z^{-(N-1)}+d_{N} z^{-N}}$

Rational z-Transforms

- The degree of the numerator polynomial $P(z)$ is M and the degree of the denominator polynomial $D(z)$ is N
- An alternate representation of a rational z transform is as a ratio of two polynomials in
z:
$G(z)=z^{(N-M)} \frac{p_{0} z^{M}+p_{1} z^{M-1}+\cdots \cdot+p_{M-1} z+p_{M}}{d_{0} z^{N}+d_{1} z^{N-1}+\cdots \cdot+d_{N-1} z+d_{N}}$

Rational z-Transforms

- A rational z-transform can be alternately written in factored form as

$$
\begin{aligned}
G(z) & =\frac{p_{0} \prod_{\ell=1}^{M}\left(1-\xi_{\ell} z^{-1}\right)}{d_{0} \prod_{\ell=1}^{N}\left(1-\lambda_{\ell} z^{-1}\right)} \\
& =z^{(N-M)} \frac{p_{0} \prod_{\ell=1}^{M}\left(z-\xi_{\ell}\right)}{d_{0} \prod_{\ell=1}^{N}\left(z-\lambda_{\ell}\right)}
\end{aligned}
$$

Rational z-Transforms

- At a root $z=\xi_{\ell}$ of the numerator polynomial $G\left(\xi_{\ell}\right)=0$, and as a result, these values of z are known as the zeros of $G(z)$
- At a root $z=\lambda_{\ell}$ of the denominator polynomial $G\left(\lambda_{\ell}\right) \rightarrow \infty$, and as a result, these values of z are known as the poles of $G(z)$

Rational z-Transforms

- Consider

$$
G(z)=z^{(N-M)} \frac{p_{0} \prod_{\ell=1}^{M}\left(z-\xi_{\ell}\right)}{d_{0} \prod_{\ell=1}^{N}\left(z-\lambda_{\ell}\right)}
$$

- Note $G(z)$ has M finite zeros and N finite poles
- If $N>M$ there are additional $N-M$ zeros at $z=0$ (the origin in the z-plane)
- If $N<M$ there are additional $M-N$ poles at

$$
z=0
$$

Rational z-Transforms

- Example - The z-transform

$$
\mu(z)=\frac{1}{1-z^{-1}}, \quad \text { for }|z|>1
$$

has a zero at $z=0$ and a pole at $z=1$

Rational z-Transforms

- A physical interpretation of the concepts of poles and zeros can be given by plotting the \log-magnitude $20 \log _{10} G(z)$ as shown on next slide for

$$
G(z)=\frac{1-2.4 z^{-1}+2.88 z^{-2}}{1-0.8 z^{-1}+0.64 z^{-2}}
$$

Rational z-Transforms

Rational z-Transforms

- Observe that the magnitude plot exhibits very large peaks around the points $z=0.4 \pm j 0.6928$ which are the poles of $G(z)$
- It also exhibits very narrow and deep wells around the location of the zeros at
$z=1.2 \pm j 1.2$

ROC of a Rational z-Transform

- ROC of a z-transform is an important concept
- Without the knowledge of the ROC, there is no unique relationship between a sequence and its z-transform
- Hence, the z-transform must always be specified with its ROC

ROC of a Rational z-Transform

- Moreover, if the ROC of a z-transform includes the unit circle, the DTFT of the sequence is obtained by simply evaluating the z-transform on the unit circle
- There is a relationship between the ROC of the z-transform of the impulse response of a causal LTI discrete-time system and its BIBO stability

ROC of a Rational z-Transform

- The ROC of a rational z-transform is bounded by the locations of its poles
- To understand the relationship between the poles and the ROC, it is instructive to examine the pole-zero plot of a z-transform
- Consider again the pole-zero plot of the z transform $\mu(z)$

ROC of a Rational z-Transform

- In this plot, the ROC, shown as the shaded area, is the region of the z-plane just outside the circle centered at the origin and going through the pole at $z=1$

ROC of a Rational z-Transform

- Example - The z-transform $H(z)$ of the sequence $h[n]=(-0.6)^{n} \mu[n]$ is given by
$H(z)=\frac{1}{1+0.6 z^{-1}}$,

$$
|z|>0.6
$$

- Here the ROC is just outside the circle going through the point $z=-0.6$

ROC of a Rational z-Transform

- A sequence can be one of the following types: finite-length, right-sided, left-sided and two-sided
- In general, the ROC depends on the type of the sequence of interest

ROC of a Rational z-Transform

- Example - Consider a finite-length sequence $g[n]$ defined for $-M \leq n \leq N$, where M and N are non-negative integers and $g[n]<\infty$
- Its z-transform is given by

$$
G(z)=\sum_{n=-M}^{N} g[n] z^{-n}=\frac{\sum_{0}^{N+M} g[n-M] z^{N+M-n}}{z^{N}}
$$

ROC of a Rational z-Transform

- Note: $G(z)$ has M poles at $z=\infty$ and N poles at $z=0$
- As can be seen from the expression for $G(z)$, the z-transform of a finite-length bounded sequence converges everywhere in the z-plane except possibly at $z=0$ and/or at $z=\infty$

ROC of a Rational z-Transform

- Example - A right-sided sequence with nonzero sample values for $n \geq 0$ is sometimes called a causal sequence
- Consider a causal sequence $u_{1}[n]$
- Its z-transform is given by

$$
U_{1}(z)=\sum_{n=0}^{\infty} u_{1}[n] z^{-n}
$$

ROC of a Rational z-Transform

- It can be shown that $U_{1}(z)$ converges exterior to a circle $|z|=R_{1}$, including the point $z=\infty$
- On the other hand, a right-sided sequence $u_{2}[n]$ with nonzero sample values only for $n \geq-M$ with M nonnegative has a z-transform $U_{2}(z)$ with M poles at $z=\infty$
- The ROC of $U_{2}(z)$ is exterior to a circle $|z|=R_{2}$, excluding the point $z=\infty$

ROC of a Rational z-Transform

- Example - A left-sided sequence with nonzero sample values for $n \leq 0$ is sometimes called a anticausal sequence
- Consider an anticausal sequence $v_{1}[n]$
- Its z-transform is given by

$$
V_{1}(z)=\sum_{n=-\infty}^{0} v_{1}[n] z^{-n}
$$

ROC of a Rational z-Transform

- It can be shown that $V_{1}(z)$ converges interior to a circle $|z|=R_{3}$, including the point $z=0$
- On the other hand, a left-sided sequence with nonzero sample values only for $n \leq N$ with N nonnegative has a z-transform $V_{2}(z)$ with N poles at $z=0$
- The ROC of $V_{2}(z)$ is interior to a circle

ROC of a Rational z-Transform

- Example - The z-transform of a two-sided sequence $w[n]$ can be expressed as

$$
W(z)=\sum_{n=-\infty}^{\infty} w[n] z^{-n}=\sum_{n=0}^{\infty} w[n] z^{-n}+\sum_{n=-\infty}^{-1} w[n] z^{-n}
$$

- The first term on the RHS, $\sum_{n=0}^{\infty} w[n] z^{-n}$, can be interpreted as the z-transform of a right-sided sequence and it thus converges exterior to the circle $|z|=R_{5}$

ROC of a Rational z-Transform

- The second term on the $\mathrm{RHS}, \sum_{n=-\infty}^{-1} w[n] z^{-n}$, can be interpreted as the z-transform of a leftsided sequence and it thus converges interior to the circle $|z|=R_{6}$
- If $R_{5}<R_{6}$, there is an overlapping ROC given by $R_{5}<|z|<R_{6}$
- If $R_{5}>R_{6}$, there is no overlap and the z-transform does not exist

ROC of a Rational z-Transform

- Example - Consider the two-sided sequence

$$
u[n]=\alpha^{n}
$$

where α can be either real or complex

- Its z-transform is given by

$$
U(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}+\sum_{n=-\infty}^{-1} \alpha^{n} z^{-n}
$$

- The first term on the RHS converges for $|z|>|\alpha|$, whereas the second term converges for $|z|<\mid \alpha$

ROC of a Rational z-Transform

- There is no overlap between these two regions
- Hence, the z-transform of $u[n]=\alpha^{n}$ does not exist

ROC of a Rational z-Transform

- The ROC of a rational z-transform cannot contain any poles and is bounded by the poles
- To show that the z-transform is bounded by the poles, assume that the z-transform $X(z)$ has simple poles at $z=\alpha$ and $z=\beta$
- Assume that the corresponding sequence $x[n]$ is a right-sided sequence

ROC of a Rational z-Transform

- Then $x[n]$ has the form

$$
x[n]=\left(r_{1} \alpha^{n}+r_{2} \beta^{n}\right) \mu\left[n-N_{o}\right], \quad|\alpha|<\beta \mid
$$

where N_{o} is a positive or negative integer

- Now, the z-transform of the right-sided sequence $\gamma^{n} \mu\left[n-N_{o}\right]$ exists if

$$
\sum_{n=N_{o}}^{\infty}\left|\gamma^{n} z^{-n}\right|<\infty
$$

for some z

ROC of a Rational z-Transform

- The condition

$$
\sum_{n=N_{o}}^{\infty}\left|\gamma^{n} z^{-n}\right|<\infty
$$

holds for $|z|>\gamma \mid$ but not for $|z| \leq \gamma \mid$

- Therefore, the z-transform of

$$
x[n]=\left(r_{1} \alpha^{n}+r_{2} \beta^{n}\right) \mu\left[n-N_{o}\right], \quad \alpha|<\beta|
$$

has an ROC defined by $|\beta|<|z| \leq \infty$

ROC of a Rational z-Transform

- Likewise, the z-transform of a left-sided sequence

$$
x[n]=\left(r_{1} \alpha^{n}+r_{2} \beta^{n}\right) \mu\left[-n-N_{o}\right], \quad|\alpha|<\beta
$$

has an ROC defined by $0 \leq z<\alpha$

- Finally, for a two-sided sequence, some of the poles contribute to terms in the parent sequence for $n<0$ and the other poles contribute to terms $n \geq 0$

ROC of a Rational z-Transform

- The ROC is thus bounded on the outside by the pole with the smallest magnitude that contributes for $n<0$ and on the inside by the pole with the largest magnitude that contributes for $n \geq 0$
- There are three possible ROCs of a rational z-transform with poles at $z=\alpha$ and $z=\beta$ $(\mid \alpha<\beta)$

ROC of a Rational z-Transform

ROC of a Rational z-Transform

- In general, if the rational z-transform has N poles with R distinct magnitudes, then it has $R+1$ ROCs
- Thus, there are $R+1$ distinct sequences with the same z-transform
- Hence, a rational z-transform with a specified ROC has a unique sequence as its inverse z-transform

ROC of a Rational z-Transform

- The ROC of a rational z-transform can be easily determined using MATLAB

$$
[\mathrm{z}, \mathrm{p}, \mathrm{k}]=\mathrm{tf} 2 \mathrm{zp}(\mathrm{num}, \mathrm{den})
$$

determines the zeros, poles, and the gain constant of a rational z-transform with the numerator coefficients specified by the vector num and the denominator coefficients specified by the vector den

ROC of a Rational z-Transform

- [num,den] $=z p 2 t f(z, p, k)$ implements the reverse process
- The factored form of the z-transform can be obtained using sos $=z p 2 s o s(z, p, k)$
- The above statement computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos

ROC of a Rational z-Transform

$\boldsymbol{S O S}=\left[\begin{array}{cccccc}b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{12} \\ b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{0 L} & b_{1 L} & b_{2 L} & a_{0 L} & a_{1 L} & a_{2 L}\end{array}\right]$
where

$$
G(z)=\prod_{k=1}^{L} \frac{b_{0 k}+b_{1 k} z^{-1}+b_{2 k} z^{-2}}{a_{0 k}+a_{1 k} z^{-1}+a_{2 k} z^{-2}}
$$

ROC of a Rational z-Transform

- The pole-zero plot is determined using the function zplane
- The z-transform can be either described in terms of its zeros and poles: zplane(zeros, poles)
- or, it can be described in terms of its numerator and denominator coefficients: zplane (num, den)

ROC of a Rational z-Transform

- Example - The pole-zero plot of

$$
G(z)=\frac{2 z^{4}+16 z^{3}+44 z^{2}+56 z+32}{3 z^{4}+3 z^{3}-15 z^{2}+18 z-12}
$$

obtained using MATLAB is shown below

$$
\begin{aligned}
& \times \text {-pole } \\
& \mathrm{o} \text { - zero }
\end{aligned}
$$

Inverse z-Transform

- General Expression: Recall that, for $z=r e^{j \omega}$, the z-transform $G(z)$ given by
$G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}$ is merely the DTFT of the modified sequence $g[n] r^{-n}$
- Accordingly, the inverse DTFT is thus given by

$$
g[n] r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(r e^{j \omega}\right) e^{j \omega n} d \omega
$$

Inverse z-Transform

- By making a change of variable $z=r e^{j \omega}$, the previous equation can be converted into a contour integral given by

$$
g[n]=\frac{1}{2 \pi j} \oint_{C^{\prime}} G(z) z^{n-1} d z
$$

where C^{\prime} is a counterclockwise contour of integration defined by $|z|=r$

Inverse z-Transform

- But the integral remains unchanged when is replaced with any contour C encircling the point $z=0$ in the ROC of $G(z)$
- The contour integral can be evaluated using the Cauchy's residue theorem resulting in

$$
g[n]=\sum\left[\begin{array}{l}
\text { residues of } G(z) z^{n-1} \\
\text { at the poles inside } C
\end{array}\right]
$$

- The above equation needs to be evaluated at all values of n and is not pursued here

Inverse Transform by Partial-Fraction Expansion

- A rational z-transform $G(z)$ with a causal inverse transform $g[n]$ has an ROC that is exterior to a circle
- Here it is more convenient to express $G(z)$ in a partial-fraction expansion form and then determine $g[n]$ by summing the inverse transform of the individual simpler terms in the expansion

Inverse Transform by Partial-Fraction Expansion

- A rational $G(z)$ can be expressed as

$$
G(z)=\frac{P(z)}{D(z)}=\frac{\sum_{i=0}^{M} p_{i} z^{-i}}{\sum_{i=0}^{N} d_{i} z^{-i}}
$$

- If $M \geq N$ then $G(z)$ can be re-expressed as

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\frac{P_{1}(z)}{D(z)}
$$

where the degree of $P_{1}(z)$ is less than N

Inverse Transform by Partial-Fraction Expansion

- The rational function $P_{1}(z) / D(z)$ is called a proper fraction
- Example - Consider

$$
G(z)=\frac{2+0.8 z^{-1}+0.5 z^{-2}+0.3 z^{-3}}{1+0.8 z^{-1}+0.2 z^{-2}}
$$

- By long division we arrive at

$$
\frac{5.5+2.1 z^{-1}}{-0.8 z^{-1}+0.2 z^{-2}}
$$

Inverse Transform by Partial-Fraction Expansion

- Simple Poles: In most practical cases, the rational z-transform of interest $G(z)$ is a proper fraction with simple poles
- Let the poles of $G(\mathrm{z})$ be at $z=\lambda_{k}, 1 \leq k \leq N$
- A partial-fraction expansion of $G(z)$ is then of the form

$$
G(z)=\sum_{\ell=1}^{N}\left(\frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}\right)
$$

Inverse Transform by Partial-Fraction Expansion

- The constants ρ_{ℓ} in the partial-fraction expansion are called the residues and are given by

$$
\rho_{\ell}=\left.\left(1-\lambda_{\ell} z^{-1}\right) G(z)\right|_{z=\lambda_{\ell}}
$$

- Each term of the sum in partial-fraction expansion has an ROC given by $|z|>\left|\lambda_{\ell}\right|$ and, thus has an inverse transform of the form $\rho_{\ell}\left(\lambda_{\ell}\right)^{n} \mu[n]$

Inverse Transform by Partial-Fraction Expansion

- Therefore, the inverse transform $g[n]$ of $G(z)$ is given by

$$
g[n]=\sum_{\ell=1}^{N} \rho_{\ell}\left(\lambda_{\ell}\right)^{n} \mu[n]
$$

- Note: The above approach with a slight modification can also be used to determine the inverse of a rational z-transform of a noncausal sequence

Inverse Transform by Partial-Fraction Expansion

- Example - Let the z-transform $H(z)$ of a causal sequence $h[n]$ be given by

$$
H(z)=\frac{z(z+2)}{(z-0.2)(z+0.6)}=\frac{1+2 z^{-1}}{\left(1-0.2 z^{-1}\right)\left(1+0.6 z^{-1}\right)}
$$

- A partial-fraction expansion of $H(z)$ is then of the form

$$
H(z)=\frac{\rho_{1}}{1-0.2 z^{-1}}+\frac{\rho_{2}}{1+0.6 z^{-1}}
$$

Inverse Transform by Partial-Fraction Expansion

- Now

$$
\rho_{1}=\left.\left(1-0.2 z^{-1}\right) H(z)\right|_{z=0.2}=\left.\frac{1+2 z^{-1}}{1+0.6 z^{-1}}\right|_{z=0.2}=2.75
$$

and
$\rho_{2}=\left.\left(1+0.6 z^{-1}\right) H(z)\right|_{z=-0.6}=\left.\frac{1+2 z^{-1}}{1-0.2 z^{-1}}\right|_{z=-0.6}=-1.75$

Inverse Transform by Partial-Fraction Expansion

- Hence

$$
H(z)=\frac{2.75}{1-0.2 z^{-1}}-\frac{1.75}{1+0.6 z^{-1}}
$$

- The inverse transform of the above is therefore given by

$$
h[n]=2.75(0.2)^{n} \mu[n]-1.75(-0.6)^{n} \mu[n]
$$

Inverse Transform by Partial-Fraction Expansion

- Multiple Poles: If $G(z)$ has multiple poles, the partial-fraction expansion is of slightly different form
- Let the pole at $z=v$ be of multiplicity L and the remaining $N-L$ poles be simple and at $z=\lambda_{\ell}, 1 \leq \ell \leq N-L$

Inverse Transíorm by Partial-Fraction Expansion

- Then the partial-fraction expansion of $G(z)$ is of the form

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\sum_{\ell=1}^{N-L} \frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}+\sum_{i=1}^{L} \frac{\gamma_{i}}{\left(1-v z^{-1}\right)^{i}}
$$

where the constants γ_{i} are computed using

$$
\gamma_{i}=\frac{1}{(L-i)!(-v)^{L-i}} \frac{d^{L-i}}{d\left(z^{-1}\right)^{L-i}}\left[\left(1-v z^{-1}\right)^{L} G(z)\right]_{z=v}
$$

- The residues ρ_{ℓ} are calculated as before

Partial-Fraction Expansion Using MATLAB

- [r, p,k]=residuez (num, den) develops the partial-fraction expansion of a rational z-transform with numerator and denominator coefficients given by vectors num and den
- Vector r contains the residues
- Vector p contains the poles
- Vector k contains the constants η_{ℓ}

Partial-Fraction Expansion Using MATLAB

- [num, den]=residuez (r, p,k) converts a z-transform expressed in a partial-fraction expansion form to its rational form

Inverse z-Transform via Long

Division

- The z-transform $G(z)$ of a causal sequence $\{g[n]\}$ can be expanded in a power series in z^{-1}
- In the series expansion, the coefficient multiplying the term z^{-n} is then the n-th sample $g[n]$
- For a rational z-transform expressed as a ratio of polynomials in z^{-1}, the power series expansion can be obtained by long division

Inverse z-Transform via Long Division

- Example - Consider

$$
H(z)=\frac{1+2 z^{-1}}{1+0.4 z^{-1}-0.12 z^{-2}}
$$

- Long division of the numerator by the denominator yields

$$
H(z)=1+1.6 z^{-1}-0.52 z^{-2}+0.4 z^{-3}-0.2224 z^{-4}+\cdots
$$

- As a result
${ }_{71}\{h[n]\}=\underset{\uparrow}{\{1} \begin{array}{llllll}-0.5 & -0.52 & 0.4 & \begin{array}{c}-0.224 \\ \text { Copyright © 2001, s. K. Mitra }\end{array} & \ldots .\end{array}$

Inverse z-Transform Using MATLAB

- The function impz can be used to find the inverse of a rational z-transform $G(z)$
- The function computes the coefficients of the power series expansion of $G(z)$
- The number of coefficients can either be user specified or determined automatically

Table 3.9: z-Transform Properties

Property	Sequence	z-Transform	ROC
	$g[n]$	$G(z)$	\mathcal{R}_{g}
	$h^{\prime}[n]$	\mathcal{R}_{h}	

z-Transform Properties

- Example - Consider the two-sided sequence

$$
v[n]=\alpha^{n} \mu[n]-\beta^{n} \mu[-n-1]
$$

- Let $x[n]=\alpha^{n} \mu[n]$ and $y[n]=-\beta^{n} \mu[-n-1]$ with $X(z)$ and $Y(z)$ denoting, respectively, their z-transforms
- Now

$$
\begin{aligned}
& X(z)=\frac{1}{1-\alpha z^{-1}}, \quad|z|>\alpha \mid \\
& Y(z)=\frac{1}{1-\beta z^{-1}}, \quad|z|<|\beta|
\end{aligned}
$$

z-Transform Properties

- Using the linearity property we arrive at

$$
V(z)=X(z)+Y(z)=\frac{1}{1-\alpha z^{-1}}+\frac{1}{1-\beta z^{-1}}
$$

- The ROC of $V(z)$ is given by the overlap regions of $|z|>|\alpha|$ and $|z|<|\beta|$
- If $|\alpha<|\beta|$, then there is an overlap and the ROC is an annular region $|\alpha|<|z|<\beta \mid$
- If $|\alpha|>\mid \beta$, then there is no overlap and $V(z)$ does not exist

z-Transform Properties

- Example - Determine the z-transform and its ROC of the causal sequence

$$
x[n]=r^{n}\left(\cos \omega_{o} n\right) \mu[n]
$$

- We can express $x[n]=v[n]+v^{*}[n]$ where

$$
v[n]=\frac{1}{2} r^{n} e^{j \omega_{o} n} \mu[n]=\frac{1}{2} \alpha^{n} \mu[n]
$$

- The z-transform of $v[n]$ is given by

$$
V(z)=\frac{1}{2} \cdot \frac{1}{1-\alpha z^{-1}}=\frac{1}{2} \cdot \frac{1}{1-r e^{j \omega_{o}} z^{-1}}, \quad|z|>|\alpha|=r
$$

z-Transform Properties

- Using the conjugation property we obtain the z-transform of $v^{*}[n]$ as

$$
\begin{array}{r}
V^{*}\left(z^{*}\right)=\frac{1}{2} \cdot \frac{1}{1-\alpha^{*} z^{-1}}=\frac{1}{2} \cdot \frac{1}{1-r e^{-j \omega_{o}} z^{-1}}, \\
|z|>|\alpha|
\end{array}
$$

- Finally, using the linearity property we get

$$
X(z)=V(z)+V^{*}\left(z^{*}\right)
$$

$$
=\frac{1}{2}\left(\frac{1}{1-r e^{j \omega_{o} z^{-1}}}+\frac{1}{1-r e^{-j \omega_{o} z^{-1}}}\right)
$$

z-Transform Properties

- or,

$$
X(z)=\frac{1-\left(r \cos \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}}, \quad|z|>r
$$

- Example - Determine the z-transform $Y(z)$ and the ROC of the sequence

$$
y[n]=(n+1) \alpha^{n} \mu[n]
$$

- We can write $y[n]=n x[n]+x[n]$ where

$$
x[n]=\alpha^{n} \mu[n]
$$

z-Transform Properties

- Now, the z-transform $X(z)$ of $x[n]=\alpha^{n} \mu[n]$ is given by

$$
X(z)=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha|
$$

- Using the differentiation property, we arrive at the z-transform of $n x[n]$ as

$$
-z \frac{d X(z)}{d z}=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)}, \quad|z|>|\alpha|
$$

z-Transform Properties

- Using the linearity property we finally obtain

$$
\begin{aligned}
Y(z)=\frac{1}{1-\alpha z^{-1}} & +\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}} \\
& =\frac{1}{\left(1-\alpha z^{-1}\right)^{2}},|z|>|\alpha|
\end{aligned}
$$

