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• It is nearly impossible to design a linear-
phase IIR transfer function

• It is always possible to design an FIR
transfer function with an exact linear-phase
response

• Consider a causal FIR transfer function H(z)
of length N+1, i.e., of order N:
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• The above transfer function has a linear
phase, if its impulse response h[n] is either
symmetric, i.e.,

or is antisymmetric, i.e.,
NnnNhnh ≤≤−= 0],[][
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• Since the length of the impulse response can
be either even or odd, we can define four
types of linear-phase FIR transfer functions

• For an antisymmetric FIR filter of odd
length, i.e., N even

                h[N/2] = 0
• We examine next the each of the 4 cases
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Type 1: N = 8 Type 2: N = 7

Type 3: N = 8 Type 4: N = 7



5
Copyright © 2001, S. K. Mitra

Linear-Phase FIR TransferLinear-Phase FIR Transfer
FunctionsFunctions

Type 1: Symmetric Impulse Response with
Odd Length

• In this case, the degree N is even
• Assume N = 8 for simplicity
• The transfer function H(z) is given by
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• Because of symmetry, we have h[0] = h[8],
h[1] = h[7], h[2] = h[6], and h[3] = h[5]

• Thus, we can write
)]([)]([)( 718 110 −−− +++= zzhzhzH

45362 432 −−−−− +++++ zhzzhzzh ][)]([)]([
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• The corresponding frequency response is
then given by

• The quantity inside the braces is a real
function of ω, and can assume positive or
negative values in the range π≤ω≤0

)3cos(]1[2)4cos(]0[2{)( 4 ω+ω= ω−ω hheeH jj

]}4[)cos(]3[2)2cos(]2[2 hhh +ω+ω+



8
Copyright © 2001, S. K. Mitra

Linear-Phase FIR TransferLinear-Phase FIR Transfer
FunctionsFunctions

• The phase function here is given by

where β is either 0 or π, and hence, it is a
linear function of ω in the generalized sense

• The group delay is given by

indicating a constant group delay of 4 samples
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• In the general case for Type 1 FIR filters,
the frequency response is of the form

where the amplitude response          , also
called the zero-phase response, is of the
form
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• Example - Consider

which is seen to be a slightly modified
version of a length-7 moving-average FIR
filter

• The above transfer function has a
symmetric impulse response and therefore a
linear phase response
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• A plot of the magnitude response of
along with that of the 7-point moving-
average filter is shown below
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• Note the improved magnitude response
obtained by simply changing the first and the
last impulse response coefficients of a
moving-average (MA) filter

• It can be shown that we an express

which is seen to be a cascade of a 2-point MA
filter with a 6-point MA filter

• Thus,           has a double zero at          , i.e.,
(ω = π)
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Type 2: Symmetric Impulse Response with
Even Length

• In this case, the degree N is odd
• Assume N = 7 for simplicity
• The transfer function is of the form

321 3210 −−− +++= zhzhzhhzH ][][][][)(
7654 7654 −−−− ++++ zhzhzhzh ][][][][
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• Making use of the symmetry of the impulse
response coefficients, the transfer function
can be written as

)]([)]([)( 617 110 −−− +++= zzhzhzH
)]([)]([ 4352 32 −−−− ++++ zzhzzh

)]([)]([{ ///// 2525272727 10 −−− +++= zzhzzhz
)}]([)]([ //// 21212323 32 −− ++++ zzhzzh
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• The corresponding frequency response is
given by

• As before, the quantity inside the braces is a
real function of ω, and can assume positive
or negative values in the range
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• Here the phase function is given by

where again β is either 0 or π
• As a result, the phase is also a linear

function of ω in the generalized sense
• The corresponding group delay is

indicating a group delay of     samples

β+ω−=ωθ 2
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• The expression for the frequency response
in the general case for Type 2 FIR filters is
of the form

where the amplitude response is given by
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Type 3: Antiymmetric Impulse Response
with Odd Length

• In this case, the degree N is even
• Assume N = 8 for simplicity
• Applying the symmetry condition we get

)]([)]([{)( 33444 10 −−− −+−= zzhzzhzzH
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• The corresponding frequency response is
given by

• It also exhibits a generalized phase response
given by

where β is either 0 or π

)3sin(]1[2)4sin(]0[2{)( 2/4 ω+ω= π−ω−ω hheeeH jjj
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• The group delay here is

indicating a constant group delay of 4 samples
• In the general case

where the amplitude response is of the form
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Type 4: Antiymmetric Impulse Response
with Even Length

• In this case, the degree N is even
• Assume N = 7 for simplicity
• Applying the symmetry condition we get
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• The corresponding frequency response is
given by

• It again exhibits a generalized phase
response given by

where β is either 0 or π
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• The group delay is constant and is given by

• In the general case we have

where now the amplitude response is of the
form

2
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General Form of Frequency Response
• In each of the four types of linear-phase FIR

filters, the frequency response is of the form

• The amplitude response           for each of
the four types of linear-phase FIR filters can
become negative over certain frequency
ranges, typically in the stopband

)()( 2/ ω= βω−ω HeeeH jjNj ~
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• The magnitude and phase responses of the
linear-phase FIR are given by

• The group delay in each case is

)(|)(| ω=ω HeH j
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• Note that, even though the group delay is
constant, since in general                 is not a
constant, the output waveform is not a
replica of the input waveform

• An FIR filter with a frequency response that
is a real function of ω is often called a zero-
phase filter

• Such a filter must have a noncausal impulse
response

|)(| ωjeH
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• Consider first an FIR filter with a symmetric
impulse response:

• Its transfer function can be written as

• By making a change of variable                 ,
we can write
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• But,

• Hence for an FIR filter with a symmetric
impulse response of length N+1 we have

• A real-coefficient polynomial H(z)
satisfying the above condition is called a
mirror-image polynomial (MIP)
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• Now consider first an FIR filter with an

antisymmetric impulse response:

• Its transfer function can be written as

• By making a change of variable                 ,
we get
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• Hence, the transfer function H(z) of an FIR

filter with an antisymmetric impulse
response satisfies the condition

• A real-coefficient polynomial H(z)
satisfying the above condition is called a
antimirror-image polynomial (AIP)

)()( 1−−−= zHzzH N
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• It follows from the relation

that if            is a zero of H(z), so is
• Moreover, for an FIR filter with a real

impulse response, the zeros of H(z) occur in
complex conjugate pairs

• Hence, a zero at           is associated with a
zero at

)()( 1−−±= zHzzH N
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• Thus, a complex zero that is not on the unit

circle is associated with a set of 4 zeros given
by

• A zero on the unit circle appear as a pair

as its reciprocal is also its complex conjugate

,φjrez ±= φj
r ez ±= 1

φjez ±=
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• Since a zero at            is its own reciprocal,

it can appear only singly
• Now a Type 2 FIR filter satisfies

with degree N odd
• Hence

implying                  , i.e., H(z) must have a
zero at

1±=z

)()( 1−−= zHzzH N
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• Likewise, a Type 3 or 4 FIR filter satisfies

• Thus
implying that H(z) must have a zero at z = 1

• On the other hand, only the Type 3 FIR
filter is restricted to have a zero at
since here the degree N is even and hence,

)()( 1−−−= zHzzH N

)()()()( 1111 HHH N −=−= −

1−=z
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• Typical zero locations shown below

1− 1

Type 2Type 1

1− 1

1− 1

Type 4Type 3

1− 1
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• Summarizing

(1) Type 1 FIR filter: Either an even number
or no zeros at z = 1 and
(2) Type 2 FIR filter: Either an even number
or no zeros at z = 1, and an odd number of
zeros at
(3) Type 3 FIR filter: An odd number of
zeros at z = 1 and

1−=z

1−=z

1−=z
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(4) Type 4 FIR filter: An odd number of
zeros at z = 1, and either an even number or
no zeros at

• The presence of zeros at            leads to the
following limitations on the use of these
linear-phase transfer functions for designing
frequency-selective filters

1−=z
1±=z
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• A Type 2 FIR filter cannot be used to

design a highpass filter since it always has a
zero

• A Type 3 FIR filter has zeros at both z = 1
and           , and hence cannot be used to
design either a lowpass or a highpass or a
bandstop filter

1−=z

1−=z
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• A Type 4 FIR filter is not appropriate to

design a lowpass filter due to the presence
of a zero at z = 1

• Type 1 FIR filter has no such restrictions
and can be used to design almost any type
of filter
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• A causal stable real-coefficient transfer
function H(z) is defined as a bounded real
(BR) transfer function if

• Let x[n] and y[n] denote, respectively, the
input and output of a digital filter
characterized by a BR transfer function H(z)
with              and              denoting their
DTFTs

)( ωjeX )( ωjeY

1|)(| ≤ωjeH for all values of ω
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• Then the condition                    implies that

• Integrating the above from         to π, and
applying Parseval’s relation we get

1|)(| ≤ωjeH
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• Thus, for all finite-energy inputs, the output
energy is less than or equal to the input
energy implying that a digital filter
characterized by a BR transfer function can
be viewed as a passive structure

• If                    , then the output energy is
equal to the input energy, and such a digital
filter is therefore a lossless system

1|)(| =ωjeH
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• A causal stable real-coefficient transfer
function H(z) with                     is thus
called a lossless bounded real (LBR)
transfer function

• The BR and LBR transfer functions are the
keys to the realization of digital filters with
low coefficient sensitivity

1|)(| =ωjeH
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