Comb Filters

- The simple filters discussed so far are characterized either by a single passband and/or a single stopband
- There are applications where filters with multiple passbands and stopbands are required
- The comb filter is an example of such filters

Comb Filters

- In its most general form, a comb filter has a frequency response that is a periodic function of ω with a period $2 \pi / L$, where L is a positive integer
- If $H(z)$ is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with L delays resulting in a structure with a transfer function given by $G(z)=H\left(z^{L}\right)$

Comb Filters

- If $\left|H\left(e^{j \omega}\right)\right|$ exhibits a peak at ω_{p}, then $\left|G\left(e^{j \omega}\right)\right|$ will exhibit L peaks at $\omega_{p} k / L, 0 \leq k \leq L-1$ in the frequency range $0 \leq \omega<2 \pi$
- Likewise, if $\left|H\left(e^{j \omega}\right)\right|$ has a notch at ω_{o}, then $\left|G\left(e^{j \omega}\right)\right|$ will have L notches at $\omega_{o} k / L$, $0 \leq k \leq L-1$ in the frequency range $0 \leq \omega<2 \pi$
- A comb filter can be generated from either an FIR or an IIR prototype filter

Comb Filters

- For example, the comb filter generated from the prototype lowpass FIR filter $H_{0}(z)=$ $\frac{1}{2}\left(1+z^{-1}\right)$ has a transfer function

$$
G_{0}(z)=H_{0}\left(z^{L}\right)=\frac{1}{2}\left(1+z^{-L}\right)
$$

- $\left|G_{0}\left(e^{j \omega}\right)\right|$ has L notches at $\omega=(2 k+1) \pi / L$ and L peaks at $\omega=2 \pi k / L$, $0 \leq k \leq L-1$, in the frequency range

$$
0 \leq \omega<2 \pi
$$

Comb Filters

- For example, the comb filter generated from the prototype highpass FIR filter $H_{1}(z)=$ $\frac{1}{2}\left(1-z^{-1}\right)$ has a transfer function

$$
G_{1}(z)=H_{1}\left(z^{L}\right)=\frac{1}{2}\left(1-z^{-L}\right)
$$

 at $\omega=(2 k+1) \pi / L$ and L notches at $\omega=2 \pi k / L$, $0 \leq k \leq L-1$, in the frequency range

$$
0 \leq \omega<2 \pi
$$

Comb Filters

- Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter
- For example, the M-point moving average filter

$$
H(z)=\frac{1-z^{-M}}{M\left(1-z^{-1}\right)}
$$

has been used as a prototype

Comb Filters

- This filter has a peak magnitude at $\omega=0$, and $M-1$ notches at $\omega=2 \pi \ell / M, 1 \leq \ell \leq M-1$
- The corresponding comb filter has a transfer function

$$
G(z)=\frac{1-z^{-L M}}{M\left(1-z^{-L}\right)}
$$

whose magnitude has L peaks at $\omega=2 \pi k / L$, $0 \leq k \leq L-1$ and $L(M-1)$ notches at $\omega=2 \pi k / L M, 1 \leq k \leq L(M-1)$

Allpass Transier Function

Definition

- An IIR transfer function $A(z)$ with unity magnitude response for all frequencies, i.e.,

$$
\left|A\left(e^{j \omega}\right)\right|^{2}=1, \quad \text { for all } \omega
$$

is called an allpass transfer function

- An M-th order causal real-coefficient allpass transfer function is of the form

$$
A_{M}(z)= \pm \frac{d_{M}+d_{M-1} z^{-1}+\cdots+d_{1} z^{-M+1}+z^{-M}}{1+d_{1} z^{-1}+\cdots+d_{M-1} z^{-M+1}+d_{M} z^{-M}}
$$

Allpass Transfer Function

- If we denote the denominator polynomials of $A_{M}(z)$ as $D_{M}(z)$:

$$
D_{M}(z)=1+d_{1} z^{-1}+\cdots+d_{M-1} z^{-M+1}+d_{M} z^{-M}
$$

then it follows that $A_{M}(z)$ can be written as:

$$
A_{M}(z)= \pm \frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)}
$$

- Note from the above that if $z=r e^{j \phi}$ is a pole of a real coefficient allpass transfer function, then it has a zero at $z=\frac{1}{r} e^{-j \phi}$

Allpass Transfer Function

- The numerator of a real-coefficient allpass transfer function is said to be the mirrorimage polynomial of the denominator, and vice versa
- We shall use the notation $\tilde{D}_{M}(z)$ to denote the mirror-image polynomial of a degree- M polynomial $D_{M}(z)$, i.e.,

$$
\tilde{D}_{M}(z)=z^{-M} D_{M}(z)
$$

Allpass Transfer Function

- The expression

$$
A_{M}(z)= \pm \frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)}
$$

implies that the poles and zeros of a realcoefficient allpass function exhibit mirrorimage symmetry in the z-plane

Allpass Transfer Function

- To show that $\left|A_{M}\left(e^{j \omega}\right)\right|=1$ we observe that

$$
A_{M}\left(z^{-1}\right)= \pm \frac{z^{M} D_{M}(z)}{D_{M}\left(z^{-1}\right)}
$$

- Therefore

$$
A_{M}(z) A_{M}\left(z^{-1}\right)=\frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)} \frac{z^{M} D_{M}(z)}{D_{M}\left(z^{-1}\right)}
$$

- Hence

$$
\left|A_{M}\left(e^{j \omega}\right)\right|^{2}=\left.A_{M}(z) A_{M}\left(z^{-1}\right)\right|_{z=e^{j \omega}}=1
$$

Allpass Transfer Function

- Now, the poles of a causal stable transfer function must lie inside the unit circle in the z-plane
- Hence, all zeros of a causal stable allpass transfer function must lie outside the unit circle in a mirror-image symmetry with its poles situated inside the unit circle

Allpass Transfer Function

- Figure below shows the principal value of the phase of the 3rd-order allpass function

$$
A_{3}(z)=\frac{-0.2+0.18 z^{-1}+0.4 z^{-2}+z^{-3}}{1+0.4 z^{-1}+0.18 z^{-2}-0.2 z^{-3}}
$$

- Note the discontinuity by the amount of 2π in the phase $\theta(\omega)$

Principal value of phase

Allpass Transier Function

- If we unwrap the phase by removing the discontinuity, we arrive at the unwrapped phase function $\theta_{c}(\omega)$ indicated below
- Note: The unwrapped phase function is a continuous function of ω

Allpass Transfer Function

- The unwrapped phase function of any arbitrary causal stable allpass function is a continuous function of ω

Properties

- (1) A causal stable real-coefficient allpass transfer function is a lossless bounded real (LBR) function or, equivalently, a causal stable allpass filter is a lossless structure

Allpass Transier Function

- (2) The magnitude function of a stable allpass function $A(z)$ satisfies:

$$
\left\lvert\, A(z) \begin{cases}<1, & \text { for }|z|>1 \\ =1, & \text { for }|z|=1 \\ >1, & \text { for }|z|<1\end{cases}\right.
$$

- (3) Let $\tau(\omega)$ denote the group delay function of an allpass filter $A(z)$, i.e.,

$$
\tau(\omega)=-\frac{d}{d \omega}\left[\theta_{c}(\omega)\right]
$$

Allpass Transier Function

- The unwrapped phase function $\theta_{c}(\omega)$ of a stable allpass function is a monotonically decreasing function of ω so that $\tau(\omega)$ is everywhere positive in the range $0<\omega<\pi$
- The group delay of an M-th order stable real-coefficient allpass transfer function satisfies:

$$
\int_{0}^{\pi} \tau(\omega) d \omega=M \pi
$$

Allpass Transier Function

A Simple Application

- A simple but often used application of an allpass filter is as a delay equalizer
- Let $G(z)$ be the transfer function of a digital filter designed to meet a prescribed magnitude response
- The nonlinear phase response of $G(z)$ can be corrected by cascading it with an allpass filter $A(z)$ so that the overall cascade has a constant group delay in the band of interest

Allpass Transfer Function

- Since $\left|A\left(e^{j \omega}\right)\right|=1$, we have

$$
\left|G\left(e^{j \omega}\right) A\left(e^{j \omega}\right)\right|=\left|G\left(e^{j \omega}\right)\right|
$$

- Overall group delay is the given by the sum of the group delays of $G(z)$ and $A(z)$

Minimum-Phase and MaximumPhase Transfer Functions

- Consider the two 1 st-order transfer functions:

$$
H_{1}(z)=\frac{z+b}{z+a}, \quad H_{2}(z)=\frac{b z+1}{z+a},|a|<1,|b|<1
$$

- Both transfer functions have a pole inside the unit circle at the same location $z=-a$ and are stable
- But the zero of $H_{1}(z)$ is inside the unit circle at $z=-b$, whereas, the zero of $H_{2}(z)$ is at $z=-\frac{1}{b}$ situated in a mirror-image symmetry

Minimum-Phase and MaximumPhase Transfer Functions

- Figure below shows the pole-zero plots of the two transfer functions

$H_{1}(z)$

$H_{2}(z)$

Minimum-Phase and MaximumPhase Transfer Functions

- However, both transfer functions have an identical magnitude function as

$$
H_{1}(z) H_{1}\left(z^{-1}\right)=H_{2}(z) H_{2}\left(z^{-1}\right)=1
$$

- The corresponding phase functions are

$$
\begin{aligned}
& \arg \left[H_{1}\left(e^{j \omega}\right)\right]=\tan ^{-1} \frac{\sin \omega}{b+\cos \omega}-\tan ^{-1} \frac{\sin \omega}{a+\cos \omega} \\
& \arg \left[H_{2}\left(e^{j \omega}\right)\right]=\tan ^{-1} \frac{b \sin \omega}{1+b \cos \omega}-\tan ^{-1} \frac{\sin \omega}{a+\cos \omega}
\end{aligned}
$$

Minimum-Phase and MaximumPhase Transfer Functions

- Figure below shows the unwrapped phase responses of the two transfer functions for $\mathrm{a}=0.8$ and $\mathrm{b}=-0.5$

Minimum-Phase and MaximumPhase Transfer Functions

- From this figure it follows that $H_{2}(z)$ has an excess phase lag with respect to $H_{1}(z)$
- Generalizing the above result, we can show that a causal stable transfer function with all zeros outside the unit circle has an excess phase compared to a causal transfer function with identical magnitude but having all zeros inside the unit circle

Minimum-Phase and MaximumPhase Transfer Functions

- A causal stable transfer function with all zeros inside the unit circle is called a minimum-phase transfer function
- A causal stable transfer function with all zeros outside the unit circle is called a maximum-phase transfer function
- Any nonminimum-phase transfer function can be expressed as the product of a minimum-phase transfer function and a stable allpass transfer function

Complementary Transier Functions

- A set of digital transfer functions with complementary characteristics often finds useful applications in practice
- Four useful complementary relations are described next along with some applications

Complementary Transfer Functions

Delay-Complementary Transfer Functions

- A set of L transfer functions, $\left\{H_{i}(z)\right\}$, $0 \leq i \leq L-1$, is defined to be delaycomplementary of each other if the sum of their transfer functions is equal to some integer multiple of unit delays, i.e.,

$$
\sum_{i=0}^{L-1} H_{i}(z)=\beta z^{-n_{o}}, \quad \beta \neq 0
$$

where n_{o} is a nonnegative integer

Complementary Transier Functions

- A delay-complementary pair $\left\{H_{0}(z), H_{1}(z)\right\}$ can be readily designed if one of the pairs is a known Type 1 FIR transfer function of odd length
- Let $H_{0}(z)$ be a Type 1 FIR transfer function of length $M=2 K+1$
- Then its delay-complementary transfer function is given by

$$
H_{1}(z)=z^{-K}-H_{0}(z)
$$

Complementary Transier Functions

- Let the magnitude response of $H_{0}(z)$ be equal to $1 \pm \delta_{p}$ in the passband and less than or equal to δ_{s} in the stopband where δ_{p} and δ_{s} are very small numbers
- Now the frequency response of $H_{0}(z)$ can be expressed as

$$
H_{0}\left(e^{j \omega}\right)=e^{-j K \omega} \tilde{H}_{0}(\omega)
$$

where $\tilde{H}_{0}(\omega)$ is the amplitude response

Complementary Transier Functions

- Its delay-complementary transfer function $H_{1}(z)$ has a frequency response given by $H_{1}\left(e^{j \omega}\right)=e^{-j K \omega} \tilde{H}_{1}(\omega)=e^{-j K \omega}\left[1-\tilde{H}_{0}(\omega)\right]$
 and in the stopband, $-\delta_{s} \leq \tilde{H}_{0}(\omega) \leq \delta_{s}$
- It follows from the above equation that in the stopband, $-\delta_{p} \leq \tilde{H}_{1}(\omega) \leq \delta_{p}$ and in the passband, $1-\delta_{s} \leq \tilde{H}_{1}(\omega) \leq 1+\delta_{s}$

Complementary Transier Functions

- As a result, $H_{1}(z)$ has a complementary magnitude response characteristic to that of $H_{0}(z)$ with a stopband exactly identical to the passband of $H_{0}(z)$, and a passband that is exactly identical to the stopband of $H_{0}(z)$
- Thus, if $H_{0}(z)$ is a lowpass filter, $H_{1}(z)$ will be a highpass filter, and vice versa

Complementary Transier Functions

- The frequency ω_{o} at which

$$
\tilde{H}_{0}\left(\omega_{o}\right)=\tilde{H}_{1}\left(\omega_{o}\right)=0.5
$$

the gain responses of both filters are 6 dB below their maximum values

- The frequency ω_{o} is thus called the $6-\mathbf{d B}$ crossover frequency

Complementary Transier Functions

- Example - Consider the Type 1 bandstop transfer function
$H_{B S}(z)=\frac{1}{64}\left(1+z^{-2}\right)^{4}\left(1-4 z^{-2}+5 z^{-4}+5 z^{-8}-4 z^{-10}+z^{-12}\right)$
- Its delay-complementary Type 1 bandpass transfer function is given by

$$
\begin{aligned}
& H_{B P}(z)=z^{-10}-H_{B S}(z) \\
& \quad=\frac{1}{64}\left(1-z^{-2}\right)^{4}\left(1+4 z^{-2}+5 z^{-4}+5 z^{-8}+4 z^{-10}+z^{-12}\right)
\end{aligned}
$$

Complementary Transier Functions

- Plots of the magnitude responses of $H_{B S}(z)$ and $H_{B P}(z)$ are shown below

Complementary Transier Functions

Allpass Complementary Filters

- A set of M digital transfer functions, $\left\{H_{i}(z)\right\}$, $0 \leq i \leq M-1$, is defined to be allpasscomplementary of each other, if the sum of their transfer functions is equal to an allpass function, i.e.,

$$
\sum_{i=0}^{M-1} H_{i}(z)=A(z)
$$

Complementary Transier Functions

Power-Complementary Transfer Functions

- A set of M digital transfer functions, $\left\{H_{i}(z)\right\}$, $0 \leq i \leq M-1$, is defined to be powercomplementary of each other, if the sum of their square-magnitude responses is equal to a constant K for all values of ω, i.e.,

$$
\sum_{i=0}^{M-1}\left|H_{i}\left(e^{j \omega}\right)\right|^{2}=K, \quad \text { for all } \omega
$$

Complementary Transier Functions

- By analytic continuation, the above property is equal to

$$
\sum_{0}^{M-1} H_{i}(z) H_{i}\left(z^{-1}\right)=K, \quad \text { for all } \omega
$$

for real coefficient $H_{i}(z)$

- Usually, by scaling the transfer functions, the power-complementary property is defined for $K=1$

Complementary Transfer Functions

- For a pair of power-complementary transfer functions, $H_{0}(z)$ and $H_{1}(z)$, the frequency ω_{o} where $\left|H_{0}\left(e^{j \omega_{o}}\right)\right|^{2}=\left|H_{1}\left(e^{j \omega_{o}}\right)\right|^{2}=0.5$, is called the cross-over frequency
- At this frequency the gain responses of both filters are $3-\mathrm{dB}$ below their maximum values
- As a result, ω_{o} is called the $\mathbf{3 - d B}$ crossover frequency

Complementary Transfer

Functions

- Example - Consider the two transfer functions $H_{0}(z)$ and $H_{1}(z)$ given by

$$
\begin{aligned}
& H_{0}(z)=\frac{1}{2}\left[A_{0}(z)+A_{1}(z)\right] \\
& H_{1}(z)=\frac{1}{2}\left[A_{0}(z)-A_{1}(z)\right]
\end{aligned}
$$

where $A_{0}(z)$ and $A_{1}(z)$ are stable allpass transfer functions

- Note that $H_{0}(z)+H_{1}(z)=A_{0}(z)$
- Hence, $H_{0}(z)$ and $H_{1}(z)$ are allpass complementary

Complementary Transier Functions

- It can be shown that $H_{0}(z)$ and $H_{1}(z)$ are also power-complementary
- Moreover, $H_{0}(z)$ and $H_{1}(z)$ are boundedreal transfer functions

Complementary Transier Functions

Doubly-Complementary Transfer Functions

- A set of M transfer functions satisfying both the allpass complementary and the powercomplementary properties is known as a doubly-complementary set

Complementary Transier Functions

- A pair of doubly-complementary IIR transfer functions, $H_{0}(z)$ and $H_{1}(z)$, with a sum of allpass decomposition can be simply realized as indicated below

$$
H_{0}(z)=\frac{Y_{0}(z)}{X(z)}
$$

$$
H_{1}(z)=\frac{Y_{1}(z)}{X(z)}
$$

Complementary Transier Functions

- Example - The first-order lowpass transfer function

$$
H_{L P}(z)=\frac{1-\alpha}{2}\left(\frac{1+z^{-1}}{1-\alpha z^{-1}}\right)
$$

can be expressed as

$$
H_{L P}(z)=\frac{1}{2}\left(1+\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}\right)=\frac{1}{2}\left[A_{0}(z)+A_{1}(z)\right]
$$

where

$$
A_{0}(z)=1, \quad A_{1}(z)=\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}
$$

Complementary Transier Functions

- Its power-complementary highpass transfer function is thus given by

$$
\begin{aligned}
H_{H P}(z) & =\frac{1}{2}\left[A_{0}(z)-A_{1}(z)\right]=\frac{1}{2}\left(1-\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}\right) \\
& =\frac{1+\alpha}{2}\left(\frac{1-z^{-1}}{1-\alpha z^{-1}}\right)
\end{aligned}
$$

- The above expression is precisely the firstorder highpass transfer function described earlier

Complementary Transier Functions

- Figure below demonstrates the allpass complementary property and the power complementary property of $H_{L P}(z)$ and $H_{H P}(z)$

Copyright © 2001, S. K. Mitra

Complementary Transier Functions

Power-Symmetric Filters

- A real-coefficient causal digital filter with a transfer function $H(z)$ is said to be a powersymmetric filter if it satisfies the condition

$$
H(z) H\left(z^{-1}\right)+H(-z) H\left(-z^{-1}\right)=K
$$

where $K>0$ is a constant

Complementary Transier Functions

- It can be shown that the gain function $G(\omega)$ of a power-symmetric transfer function at ω $=\pi$ is given by

$$
10 \log _{10} K-3 d B
$$

- If we define $G(z)=H(-z)$, then it follows from the definition of the power-symmetric filter that $H(z)$ and $G(z)$ are powercomplementary as

$$
H(z) H\left(z^{-1}\right)+G(z) G\left(z^{-1}\right)=\text { a constant }
$$

Complementary Transier Functions

Conjugate Quadratic Filter

- If a power-symmetric filter has an FIR transfer function $H(z)$ of order N, then the FIR digital filter with a transfer function

$$
G(z)=z^{-1} H\left(z^{-1}\right)
$$

is called a conjugate quadratic filter of $H(z)$ and vice-versa

Complementary Transier Functions

- It follows from the definition that $G(z)$ is also a power-symmetric causal filter
- It also can be seen that a pair of conjugate quadratic filters $H(z)$ and $G(z)$ are also power-complementary

Complementary Transfer Functions

- Example - Let $H(z)=1-2 z^{-1}+6 z^{-2}+3 z^{-3}$
- We form

$$
\begin{aligned}
& H(z) H\left(z^{-1}\right)+H(-z) H\left(-z^{-1}\right) \\
& =\left(1-2 z^{-1}+6 z^{-2}+3 z^{-3}\right)\left(1-2 z+6 z^{2}+3 z^{3}\right) \\
& \quad+\left(1+2 z^{-1}+6 z^{-2}-3 z^{-3}\right)\left(1+2 z+6 z^{2}-3 z^{3}\right) \\
& =\left(3 z^{3}+4 z+50+4 z^{-1}+3 z^{-3}\right) \\
& \quad \quad+\left(-3 z^{3}-4 z+50-4 z^{-1}-3 z^{-3}\right)=100
\end{aligned}
$$

- $\square H(z)$ is a power-symmetric transfer

Digital Two-Pairs

- The LTI discrete-time systems considered so far are single-input, single-output structures characterized by a transfer function
- Often, such a system can be efficiently realized by interconnecting two-input, twooutput structures, more commonly called two-pairs

Digital Two-Pairs

- Figures below show two commonly used block diagram representations of a two-pair

- Here Y_{1} and Y_{2} denote the two outputs, and X_{1} and X_{2} denote the two inputs, where the dependencies on the variable z has been omitted for simplicity

Digital Two-Pairs

- The input-output relation of a digital twopair is given by

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

- In the above relation the matrix τ given by

$$
\tau=\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]
$$

is called the transfer matrix of the two-pair

Digital Two-Pairs

- It follows from the input-output relation that the transfer parameters can be found as follows:

$$
\begin{array}{ll}
t_{11}=\left.\frac{Y_{1}}{X_{1}}\right|_{X_{2}=0}, & t_{12}=\left.\frac{Y_{1}}{X_{2}}\right|_{X_{1}=0} \\
t_{21}=\left.\frac{Y_{2}}{X_{1}}\right|_{X_{2}=0}, & t_{22}=\left.\frac{Y_{2}}{X_{2}}\right|_{X_{1}=0}
\end{array}
$$

Digital Two-Pairs

- An alternate characterization of the two-pair is in terms of its chain parameters as

$$
\left[\begin{array}{l}
X_{1} \\
Y_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
Y_{2} \\
X_{2}
\end{array}\right]
$$

where the matrix Γ given by

$$
\Gamma=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

is called the chain matrix of the two-pair

Digital Two-Pairs

- The relation between the transfer parameters and the chain parameters are given by
$t_{11}=\frac{C}{A}, t_{12}=\frac{A D-B C}{A}, t_{21}=\frac{1}{A}, t_{22}=-\frac{C}{A}$

$$
A=\frac{1}{t_{21}}, \quad B=-\frac{t_{22}}{t_{21}}, \quad C=\frac{t_{11}}{t_{21}}, \quad D=\frac{t_{12} t_{21}-t_{11} t_{22}}{t_{21}}
$$

Two-Pair Interconnection Schemes

Cascade Connection - Γ-cascade

- Here

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{1}^{\prime} \\
Y_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{l}
Y_{2}^{\prime} \\
X_{2}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{l}
X_{1}^{\prime \prime} \\
Y_{1}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime \prime} & B^{\prime \prime} \\
C^{\prime \prime} & D^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
Y_{2}^{\prime \prime} \\
X_{2}^{\prime \prime}
\end{array}\right]}
\end{aligned}
$$

Two-Pair Interconnection Schemes

- But from figure, $X_{1}^{\prime \prime}=Y_{2}^{\prime}$ and $Y_{1}^{\prime \prime}=X_{2}^{\prime}$
- Substituting the above relations in the first equation on the previous slide and combining the two equations we get

$$
\left[\begin{array}{c}
X_{1}^{\prime} \\
Y_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{ll}
A^{\prime \prime} & B^{\prime \prime} \\
C^{\prime \prime} & D^{\prime \prime}
\end{array}\right]\left[\begin{array}{c}
Y_{2}^{\prime \prime} \\
X_{2}^{\prime \prime}
\end{array}\right]
$$

- Hence,

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{ll}
A^{\prime \prime} & B^{\prime \prime} \\
C^{\prime \prime} & D^{\prime \prime}
\end{array}\right]
$$

Two-Pair Interconnection Schemes

Cascade Connection - τ-cascade

- Here $\left[\begin{array}{l}Y_{1}^{\prime} \\ Y_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}t_{11}^{\prime} & t_{12}^{\prime} \\ t_{21}^{\prime} & t_{22}^{\prime}\end{array}\right]\left[\begin{array}{l}X_{1}^{\prime} \\ X_{2}^{\prime}\end{array}\right]$

$$
\left[\begin{array}{l}
Y_{1}^{\prime \prime} \\
Y_{2}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
t_{11}^{\prime \prime} & t_{12}^{\prime \prime} \\
t_{21}^{\prime \prime} & t_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
X_{1}^{\prime \prime} \\
X_{2}^{\prime \prime}
\end{array}\right]
$$

Two-Pair Interconnection Schemes

- But from figure, $X_{1}^{\prime \prime}=Y_{1}^{\prime}$ and $X_{2}^{\prime \prime}=Y_{2}^{\prime}$
- Substituting the above relations in the first equation on the previous slide and combining the two equations we get

$$
\left[\begin{array}{l}
Y_{1}^{\prime \prime} \\
Y_{2}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
t_{11}^{\prime \prime} & t_{12}^{\prime \prime} \\
t_{21}^{\prime \prime} & t_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{ll}
t_{11}^{\prime} & t_{12}^{\prime} \\
t_{21}^{\prime} & t_{22}^{\prime}
\end{array}\right]\left[\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right]
$$

- Hence,

$$
\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]=\left[\begin{array}{ll}
t_{11}^{\prime \prime} & t_{12}^{\prime \prime} \\
t_{21}^{\prime \prime} & t_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{ll}
t_{11}^{\prime} & t_{12}^{\prime} \\
t_{21}^{\prime} & t_{22}^{\prime}
\end{array}\right]_{\text {Copyright © 2001, S. к. Mitra }}
$$

Two-Pair Interconnection Schemes

Constrained Two-Pair

- It can be shown that

$$
\begin{aligned}
H(z) & =\frac{Y_{1}}{X_{1}}=\frac{C+D \cdot G(z)}{A+B \cdot G(z)} \\
& =t_{11}+\frac{t_{12} t_{21} G(z)}{1-t_{22} G(z)}
\end{aligned}
$$

Algebraic Stability Test

- We have shown that the BIBO stability of a causal rational transfer function requires that all its poles be inside the unit circle
- For very high-order transfer functions, it is very difficult to determine the pole locations analytically
- Root locations can of course be determined on a computer by some type of root finding algorithms

Algebraic Stability Test

- We now outline a simple algebraic test that does not require the determination of pole locations
The Stability Triangle
 stability can be easily checked by examining its denominator coefficients

Algebraic Stability Test

- Let

$$
D(z)=1+d_{1} z^{-1}+d_{2} z^{-2}
$$

denote the denominator of the transfer
function

- In terms of its poles, $D(\mathrm{z})$ can be expressed as
$D(z)=\left(1-\lambda_{1} z^{-1}\right)\left(1-\lambda_{2} z^{-1}\right)=1-\left(\lambda_{1}+\lambda_{2}\right) z^{-1}+\lambda_{1} \lambda_{2} z^{-2}$
- Comparing the last two equations we get

$$
d_{1}=-\left(\lambda_{1}+\lambda_{2}\right), \quad d_{2}=\lambda_{1} \lambda_{2}
$$

Algebraic Stability Test

- The poles are inside the unit circle if

$$
\left|\lambda_{1}\right|<1, \quad\left|\lambda_{2}\right|<1
$$

- Now the coefficient d_{2} is given by the product of the poles
- Hence we must have

$$
\left|d_{2}\right|<1
$$

- It can be shown that the second coefficient condition is given by

$$
\left|d_{1}\right|<1+d_{2}
$$

Algebraic Stability Test

- The region in the $\left(d_{1}, d_{2}\right)$-plane where the two coefficient condition are satisfied, called the stability triangle, is shown below

Algebraic Stability Test

- Example - Consider the two 2nd-order bandpass transfer functions designed earlier:

$$
\begin{aligned}
& H_{B P}^{\prime}(z)=-0.18819 \frac{1-z^{-2}}{1-0.7343424 z^{-1}+1.37638 z^{-2}} \\
& H_{B P}^{\prime \prime}(z)=0.13673 \frac{1-z^{-2}}{1-0.533531 z^{-1}+0.72654253 z^{-2}}
\end{aligned}
$$

Algebraic Stability Test

- In the case of $H_{B P}^{\prime}(z)$, we observe that

$$
d_{1}=-0.7343424, \quad d_{2}=1.3763819
$$

- Since here $\left|d_{2}\right|>1, H_{B P}^{\prime}(z)$ is unstable
- On the other hand, in the case of $H_{B P}^{\prime \prime}(z)$, we observe that

$$
d_{1}=-0.53353098, \quad d_{2}=0.726542528
$$

- Here, $\left|d_{2}\right|<1$ and $\left|d_{1}\right|<1+d_{2}$, and hence $H_{B P}^{\prime \prime}(z)$ is BIBO stable

Algebraic Stability Test

A General Stability Test Procedure

- Let $D_{M}(z)$ denote the denominator of an M-th order causal IIR transfer function $H(z)$:

$$
D_{M}(z)=\sum_{i=0}^{M} d_{i} z^{-i}
$$

where we assume $d_{0}=1$ for simplicity

- Define an M-th order allpass transfer function:

$$
A_{M}(z)=\frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)}
$$

Algebraic Stability Test

- Or, equivalently
$A_{M}(z)=\frac{d_{M}+d_{M-1} z^{-1}+d_{M-2} z^{-2}+\cdots+d_{1} z^{-M+1}+z^{-M}}{1+d_{1} z^{-1}+d_{2} z^{-2}+\cdots+d_{M-1} z^{-M+1}+d_{M} z^{-M}}$
- If we express

$$
D_{M}(z)=\prod_{i=1}^{M}\left(1-\lambda_{i} z^{-i}\right)
$$

then it follows that

$$
d_{M}=(-1)^{M} \prod_{i=1}^{M} \lambda_{i}
$$

Algebraic Stability Test

- Now for stability we must have $\left|\lambda_{i}\right|<1$, which implies the condition $\left|d_{M}\right|<1$
- Define

$$
k_{M}=A_{M}(\infty)=d_{M}
$$

- Then a necessary condition for stability of $A_{M}(z)$, and hence, the transfer function $H(z)$ is given by

$$
k_{M}^{2}<1
$$

Algebraic Stability Test

- Assume the above condition holds
- We now form a new function

$$
A_{M-1}(z)=z\left[\frac{A_{M}(z)-k_{M}}{1-k_{M} A_{M}(z)}\right]=z\left[\frac{A_{M}(z)-d_{M}}{1-d_{M} A_{M}(z)}\right]
$$

- Substituting the rational form of $A_{M}(z)$ in the above equation we get

$$
A_{M-1}(z)=\frac{d_{M-1}^{\prime}+d_{M-2}^{\prime} z^{-1}+\cdots+d_{1}^{\prime} z^{-(M-2)}+z^{-(M-1)}}{1+d_{1}^{\prime} z^{-1}+\cdots+d_{M-2}^{\prime} z^{-(M-2)}+d_{M-1}^{\prime} z^{-(M-1)}}
$$

Algebraic Stability Test

where

$$
d_{i}^{\prime}=\frac{d_{i}-d_{M} d_{M-i}}{1-d_{M}^{2}}, \quad 1 \leq i \leq M-1
$$

- Hence, $A_{M-1}(z)$ is an allpass function of order $M-1$
- Now the poles λ_{o} of $A_{M-1}(z)$ are given by the roots of the equation

$$
A_{M}\left(\lambda_{o}\right)=\frac{1}{k_{M}}
$$

Algebraic Stability Test

- By assumption $k_{M}^{2}<1$
- Hence $\left|A_{M}\left(\lambda_{o}\right)\right|>1$
- If $A_{M}(z)$ is a stable allpass function, then

$$
\left\lvert\, A_{M}(z) \begin{cases}<1, & \text { for }|z|>1 \\ =1, & \text { for }|z|=1 \\ >1, & \text { for }|z|<1\end{cases}\right.
$$

- Thus, if $A_{M}(z)$ is a stable allpass function, then the condition $\left|A_{M}\left(\lambda_{o}\right)\right|>1$ holds only if

$$
\left|\lambda_{0}\right|<1
$$

Algebraic Stability Test

- Or, in other words $A_{M-1}(z)$ is a stable allpass function
- Thus, if $A_{M}(z)$ is a stable allpass function and $k_{M}^{2}<1$, then $A_{M-1}(z)$ is also a stable allpass function of one order lower
- We now prove the converse, i.e., if $A_{M-1}(z)$ is a stable allpass function and $k_{M}^{2}<1$, then $A_{M}(z)$ is also a stable allpass function

Algebraic Stability Test

- To this end, we express $A_{M}(z)$ in terms of $A_{M-1}(z)$ arriving at

$$
A_{M}(z)=\frac{k_{M}+z^{-1} A_{M-1}(z)}{1+k_{M} z^{-1} A_{M-1}(z)}
$$

- If ζ_{o} is a pole of $A_{M}(z)$, then

$$
\zeta_{o}^{-1} A_{M-1}\left(\zeta_{o}\right)=-\frac{1}{k_{M}}
$$

- By assumption $k_{M}^{2}<1$ holds

Algebraic Stability Test

- Therefore, $\left|\zeta_{o}^{-1} A_{M-1}\left(\zeta_{o}\right)\right|>1$ i.e.,

$$
\left|A_{M-1}\left(\zeta_{o}\right)\right|>\left|\zeta_{o}\right|
$$

- Assume $A_{M-1}(z)$ is a stable allpass function
- Then $\left|A_{M-1}(z)\right| \leq 1$ for $|z| \geq 1$
- Now, if $\left|\zeta_{o}\right| \geq 1$, then because of the above condition $\left|A_{M-1}\left(\zeta_{o}\right)\right| \leq 1$
- But the condition $\left|A_{M-1}\left(\zeta_{o}\right)\right|>\left|\zeta_{o}\right|$ reduces

Algebraic Stability Test

- Thus there is a contradiction
- On the other hand, if $\left|\zeta_{o}\right|<1$ then from

$$
\left|A_{M-1}(z)\right|>1 \quad \text { for }|z|<1
$$

we have $\left|A_{M-1}\left(\zeta_{o}\right)\right|>1$

- The above condition does not violate the condition $\left|A_{M-1}\left(\zeta_{o}\right)\right|>\left|\zeta_{o}\right|$

Algebraic Stability Test

- Thus, if $k_{M}^{2}<1$ and if $A_{M-1}(z)$ is a stable allpass function, then $A_{M}(z)$ is also a stable allpass function
- Summarizing, a necessary and sufficient set of conditions for the causal allpass function $A_{M}(z)$ to be stable is therefore:
(1) $k_{M}^{2}<1$, and
(2) The allpass function $A_{M-1}(z)$ is stable

Algebraic Stability Test

- Thus, once we have checked the condition $k_{M}^{2}<1$, we test next for the stability of the lower-order allpass function $A_{M-1}(z)$
- The process is then repeated, generating a set of coefficients:

$$
k_{M}, k_{M-1}, \ldots, k_{2}, k_{1}
$$

and a set of allpass functions of decreasing order:

$$
A_{M}(z), A_{M-1}(z), \ldots, A_{2}(z), A_{1}(z), A_{0}(z)=1
$$

Algebraic Stability Test

- The allpass function $A_{M}(z)$ is stable if and only if $k_{i}^{2}<1$ for i
- Example - Test the stability of

$$
H(z)=\frac{1}{4 z^{4}+3 z^{3}+2 z^{2}+z+1}
$$

- From $H(z)$ we generate a 4 -th order allpass function
$A_{4}(z)=\frac{\frac{1}{4} z^{4}+\frac{1}{4} z^{3}+\frac{1}{2} z^{2}+\frac{3}{4} z+1}{z^{4}+\frac{3}{4} z^{3}+\frac{1}{2} z^{2}+\frac{1}{4} z+\frac{1}{4}}=\frac{d_{4} z^{4}+d_{3} z^{3}+d_{2} z^{2}+d_{1} z+1}{z^{4}+d_{1} z^{3}+d_{2} z^{2}+d_{3} z+d_{4}}$
${ }_{82}$ - Note: $k_{4}=A_{4}(\infty)=d_{4}=\frac{1}{4}<1$

Algebraic Stability Test

- Using

$$
d_{i}^{\prime}=\frac{d_{i}-d_{4} d_{4-i}}{1-d_{4}^{2}}, \quad 1 \leq i \leq 3
$$

we determine the coefficients $\left\{d_{i}^{\prime}\right\}$ of the third-order allpass function $A_{3}(z)$ from the coefficients $\left\{d_{i}\right\}$ of $A_{4}(z)$:

$$
A_{3}(z)=\frac{d_{3}^{\prime} z^{3}+d_{2}^{\prime} z^{2}+d_{1}^{\prime} z+1}{d_{1}^{\prime} z^{3}+d_{2}^{\prime} z^{2}+d_{3}^{\prime} z+1}=\frac{\frac{1}{15} z^{3}+\frac{2}{5} z^{2}+\frac{11}{15} z+1}{z^{3}+\frac{11}{15} z^{2}+\frac{2}{5} z+\frac{1}{15}}
$$

Algebraic Stability Test

- Note: $k_{3}=A_{3}(\infty)=d_{3}^{\prime}=\frac{1}{15}<1$
- Following the above procedure, we derive the next two lower-order allpass functions:

$$
\begin{aligned}
& A_{2}(z)=\frac{\frac{79}{224} z^{2}+\frac{159}{224} z+1}{z^{2}+\frac{159}{224} z+\frac{79}{224}} \\
& A_{1}(z)=\frac{\frac{53}{101} z+1}{z+\frac{53}{101}}
\end{aligned}
$$

Algebraic Stability Test

- Note: $k_{2}=A_{2}(\infty)=\frac{79}{224}<1$

$$
k_{1}=A_{1}(\infty)=\frac{53}{101}<1
$$

- Since all of the stability conditions are satisfied, $A_{4}(z)$ and hence $H(z)$ are stable
- Note: It is not necessary to derive $A_{3}(z)$ since $A_{2}(z)$ can be tested for stability using the coefficient conditions

