Matrix Representation of Digital Filter Structures

- A digital filter structure can be described in the time-domain by a set of equations relating the output sequence to the input sequence and, in some cases, one or more internally generated sequences
- Consider

Matrix Representation of Digital Filter Structures

- This structure, in the time-domain, is described by the set of equations

$$
\begin{aligned}
w_{1}[n] & =x[n]-\alpha w_{5}[n] \\
w_{2}[n] & =w_{1}[n]-\delta w_{3}[n] \\
w_{3}[n] & =w_{2}[n-1] \\
w_{4}[n] & =w_{3}[n]+\varepsilon w_{2}[n] \\
w_{5}[n] & =w_{4}[n-1] \\
y[n] & =\beta w_{1}[n]+\gamma w_{5}[n]
\end{aligned}
$$

Matrix Representation of Digital Filter Structures

- The equations cannot be implemented in the order shown with each variable on the left side computed before the variable below is computed
- For example, computation of $w_{1}[n]$ in the 1 st step requires the knowledge of $w_{5}[n]$ which is computed in the 5th step
- Likewise, computation of $w_{2}[n]$ in the $2 n d$ step requires the knowledge of $w_{3}[n]$ that is computed in the 3rd step

Matrix Representation of Digital Filter Structures

- This ordered set of equations is said to be noncomputable
- Suppose we reorder these equations

$$
\begin{aligned}
w_{3}[n] & =w_{2}[n-1] \\
w_{5}[n] & =w_{4}[n-1] \\
w_{1}[n] & =x_{4}[n]-\alpha w_{5}[n] \\
w_{2}[n] & =w_{1}[n]-\delta w_{3}[n] \\
y[n] & =\beta w_{1}[n]+\gamma w_{5}[n] \\
w_{4}[n] & =w_{3}[n]+\varepsilon w_{2}[n]
\end{aligned}
$$

Matrix Representation of Digital Filter Structures

- This ordered set of equations is computable
- In most practical applications, equations describing a digital filter structure can be put into a computable order by inspection
- A simple way to examine the computability of equations describing a digital filter structure is by writing the equations in a matrix form

Matrix Representation

- A matrix representation of the first ordered set of equations is

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
w_{1}[n] \\
w_{2}[n] \\
w_{3}[n] \\
w_{4}[n] \\
w_{5}[n] \\
y[n]
\end{array}\right]} & =\left[\begin{array}{c}
x[n] \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -\alpha & 0 \\
1 & 0 & -\delta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \varepsilon & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\beta & 0 & 0 & 0 & \gamma & 0
\end{array}\right]\left[\begin{array}{c}
w_{1}[n] \\
w_{2}[n] \\
w_{3}[n] \\
w_{4}[n] \\
w_{5}[n] \\
y[n]
\end{array}\right] \\
& +\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
w_{1}[n-1] \\
w_{2}[n-1] \\
w_{3}[n-1] \\
w_{4}[n-1] \\
w_{5}[n-1] \\
y[n-1]
\end{array}\right]_{\text {Copyright © 2001, s. . K. Mitra }} .
$$

Matrix Representation

- In compact form

$$
\mathbf{y}[n]=\mathbf{x}[n]+\mathbf{F} \mathbf{y}[\mathrm{n}]+\mathbf{G} \mathbf{y}[\mathrm{n}-1]
$$

where

$$
\begin{gathered}
\mathbf{y}[n]=\left[\begin{array}{cccccc}
w_{1}[n] & w_{2}[n] & w_{3}[n] & w_{4}[n] & w_{5}[n] & y[n]
\end{array}\right]^{T} \\
\mathbf{x}[n]=\left[\begin{array}{lllll}
x[n] & 0 & 0 & 0 & 0
\end{array} 0\right]^{T} \\
\mathbf{F}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -\alpha & 0 \\
1 & 0 & -\delta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \varepsilon & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\beta & 0 & 0 & 0 & \gamma & 0
\end{array}\right], \quad \mathbf{G}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Matrix Representation

- For the computation of present value of a particular signal variable, nonzero entries in the corresponding rows of matrices \mathbf{F} and \mathbf{G} determine the variables whose present and previous values are needed
- If a diagonal element of \mathbf{F} is nonzero, then computation of present value of the corresponding variable requires the knowledge of its present value implying presence of a delay-free loop

Matrix Representation

- Any nonzero entries in the same row above the main diagonal of \mathbf{F} imply that the computation of present value of the corresponding variable requires present values of other variables not yet computed, making the set of equations noncomputable
- Hence, for computability all elements of \mathbf{F} matrix on the diagonal and above diagonal must be zeros

Matrix Representation

- In the \mathbf{F} matrix for the first ordered set of equations, diagonal elements are all zeros, indicating absence of delay-free loops
- However, there are nonzero entries above the diagonal in the first and second rows of F indicating that the set of equations are not in proper order for computation

Matrix Representation

- The \mathbf{F} matrix for the second ordered set of equations is

$$
\mathbf{F}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\alpha & 0 & 0 & 0 & 0 \\
-\delta & 0 & 1 & 0 & 0 & 0 \\
0 & \gamma & \beta & 0 & 0 & 0 \\
1 & 0 & 0 & \varepsilon & 0 & 0
\end{array}\right]
$$

which is seen to satisfy the computability condition

Precedence Graph

- The precedence graph can be used to test the computability of a digital filter structure and to develop the proper ordering sequence for a set of equations describing a computable structure
- It is developed from the signal-flow graph description of the digital filter structure in which independent and dependent signal variables are represented by nodes, and the multiplier and delay branches are represented by directed branches

Precedence Graph

- The directed branch has an attached symbol denoting the branch gain or transmittance
- For a multiplier branch, the branch gain is the multiplier coefficient value
- For a delay branch, the branch gain is simply z^{-1}

Precedence Graph

- The signal-flow graph representation of

is shown below

Precedence Graph

- A reduced signal-flow graph is then developed by removing the delay branches and all branches going out of the input node
- The reduced signal-flow graph of the example digital filter structure is shown below

Precedence Graph

- The remaining nodes in the reduced signalflow graph are grouped as follows:
- All nodes with only outgoing branches are grouped into one set labeled $\left\{\mathcal{N}_{1}\right\}$
- Next, the set $\left\{\mathcal{N}_{2}\right\}$ is formed containing nodes coming in only from one or more nodes in the set $\left\{\mathcal{N}_{1}\right\}$ and have outgoing branches to the other nodes

Precedence Graph

- Then, form the set $\left\{\mathcal{N}_{3}\right\}$ containing nodes that have branches coming in only from one or more nodes in the sets $\left\{\mathcal{N}_{1}\right\}$ and $\left\{\mathcal{N}_{2}\right\}$, and have outgoing branches to other nodes
- Continue the process until there is a set of nodes $\left\{\mathcal{N}_{f}\right\}$ containing only incoming branches
- The rearranged signal-flow graph is called a precedence graph

Precedlence Graph

- Since signal variables belonging to $\left\{\mathcal{N}_{1}\right\}$ do not depend on the present values of other signal variables, these variables should be computed first
- Next, signal variables belonging to $\left\{\mathcal{N}_{2}\right\}$ can be computed since they depend on the present values of signal variables contained in $\left\{\mathcal{N}_{1}\right\}$ that have already been computed

Precedence Graph

- This is followed by the computation of signal variables in $\left\{\mathcal{N}_{3}\right\},\left\{\mathcal{N}_{4}\right\}$, etc.
- Finally, in the last step the signal variables in $\left\{\mathcal{N}_{f}\right\}$ are computed
- This process of sequential computation ensures the development of a valid computational algorithm
- If there is no final set $\left\{\mathcal{N}_{f}\right\}$ containing only incoming branches, the digital filter structure is noncomputable

Precedence Graph

- For the example precedence graph, pertinent groupings of node variables are:

$$
\begin{aligned}
\left\{\mathcal{N}_{1}\right\} & =\left\{w_{3}[n], w_{5}[n]\right\} \\
\left\{\mathcal{N}_{2}\right\} & =\left\{w_{1}[n]\right\} \\
\left\{\mathcal{N}_{3}\right\} & =\left\{w_{2}[n]\right\} \\
\left\{\mathcal{N}_{4}\right\} & =\left\{w_{4}[n], y[n]\right\}
\end{aligned}
$$

Precedence Graph

- Precedence graph redrawn according to the above groupings is as shown below

- Since the final node set $\left\{\mathcal{N}_{4}\right\}$ has only incoming branches, the structure is computable

Structure Verification

- A simple method to verify that the structure developed is indeed characterized by the prescribed transfer function $H(z)$
- Consider for simplicity a causal 3rd order IIR transfer function

$$
H(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+p_{2} z^{-2}+p_{3} z^{-3}}{1+d_{1} z^{-1}+d_{2} z^{-2}+d_{3} z^{-3}}
$$

- If $\{h[n]\}$ denotes its impulse response, then

$$
H(z)=\sum_{n=0}^{\infty} h[n] z^{-n}
$$

Structure Verification

- Note $P(z)=H(z) D(z)$ which is equivalent to $p_{n}=\sum_{k=0}^{n} h[k] d_{n-k}, d_{0}=1$
- Evaluate above convolution sum for $0 \leq n \leq 6$:

$$
\begin{aligned}
p_{0} & =h[0] \\
p_{1} & =h[1]+h[0] d_{1} \\
p_{2} & =h[2]+h[1] d_{1}+h[0] d_{2} \\
p_{3} & =h[3]+h[2] d_{1}+h[1] d_{2}+h[0] d_{3} \\
0 & =h[4]+h[3] d_{1}+h[2] d_{2}+h[1] d_{3} \\
0 & =h[5]+h[4] d_{1}+h[3] d_{2}+h[2] d_{3} \\
0 & =h[6]+h[5] d_{1}+h[4] d_{2}+h[3] d_{3}
\end{aligned}
$$

Structure Verification

- In matrix form we get

$$
\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3} \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
h[0] & 0 & 0 & 0 \\
h[1] & h[0] & 0 & 0 \\
h[2] & h[1] & h[0] & 0 \\
h[3] & h[2] & h[1] & h[0] \\
\hdashline h[4] & h[3] & h[2] & h[1] \\
h[5] & h[4] & h[3] & h[2] \\
h[6] & h[5] & h[4] & h[3]
\end{array}\right]\left[\begin{array}{c}
1 \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

- In partitioned form above matrix equation can be written as

$$
\left[\begin{array}{c}
\mathbf{p} \\
\cdots \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{ccc}
& \mathbf{H}_{1} & \\
\cdots & \cdots & \ldots \\
\mathbf{h} & \vdots & \mathbf{H}_{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
\cdots \\
\mathbf{d}
\end{array}\right]
$$

Structure Verification

where

$$
\mathbf{p}=\mathbf{H}_{1}\left[\begin{array}{l}
1 \\
\mathbf{d}
\end{array}\right], \quad \mathbf{0}=\left[\begin{array}{ll}
\mathbf{h} & \mathbf{H}_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
\mathbf{d}
\end{array}\right]
$$

- Solving second equation we get

$$
\mathbf{d}=-\mathbf{H}_{2}^{-1} \mathbf{h}
$$

- Substituting above in the first equation we get

$$
\mathbf{p}=\mathbf{H}_{1}\left[\begin{array}{c}
1 \\
-\mathbf{H}_{2}^{-1} \mathbf{h}
\end{array}\right]
$$

- In the case of an N-th order IIR filter, the coefficients of its transfer function can be determined from the first $2 N+1$ impulse response samples

Structure Verification

- Example - Consider the causal transfer function

$$
H(z)=\frac{2+6 z^{-1}+3 z^{-2}}{1+z^{-1}+2 z^{-2}}=2+4 z^{-1}-5 z^{-2}-3 z^{-3}+13 z^{-4}+\cdots
$$

- Here

$$
h[0]=2, h[1]=4, h[2]=-5, h[3]=-3, h[4]=13
$$

- Hence

$$
\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
4 & 2 & 0 \\
-5 & 4 & 2 \\
-3 & -5 & 4 \\
13 & -3 & -5
\end{array}\right]\left[\begin{array}{c}
1 \\
d_{1} \\
d_{2}
\end{array}\right]
$$

Structure Verification

- Solving we get

$$
\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{cc}
-5 & 4 \\
-3 & -5
\end{array}\right]^{-1}\left[\begin{array}{c}
-3 \\
13
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
4 & 2 & 0 \\
-5 & 4 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
6 \\
3
\end{array}\right]
$$

Structure Simulation and Verification Using MATLAB

- For computer simulation, the structure is described in the form of a set of equations
- These equations must be ordered properly to ensure computability
- The procedure is to express the output of each adder and filter output variable in terms of all incoming signal variables

Structure Simulation and Verification Using MATLAB

- Consider the structure

- A valid computational algorithm involving the least number of equations is

$$
\begin{aligned}
w_{1}[n] & =x[n]-\alpha w_{4}[n-1], \\
w_{2}[n] & =w_{1}[n]-\delta w_{2}[n-1], \\
w_{4}[n] & =w_{2}[n-1]+\varepsilon w_{2}[n], \\
y[n] & =\beta w_{1}[n]+\gamma w_{4}[n-1]
\end{aligned}
$$

Structure Simulation and Verification Using MATLAB

- This set of equations is evaluated for increasing values of n starting at $n=0$
- At the beginning, the initial conditions $w_{2}[-1]$ and $w_{4}[-1]$ can be set to any desired values, which are typically zero
- From the computed impulse response samples, the structure can be verified by determining the transfer function coefficients using the M-file strucver

Simulation of IIR Filters

- The M-file filter implements the IIR filter in the transposed direct form II structure shown below for a 3rd order filter

- As indicated in the figure, $\mathrm{d}(1)$ has been assumed to be equal to 1

Simulation of IIR Filters

- Basic forms of this function are

$$
\begin{aligned}
& y=\text { filter (num, den, } x) \\
& {[y, s f]=\text { filter (num, den, } x, \text { si) }}
\end{aligned}
$$

where x is the input vector, y is the output vector, si is the vector of initial conditions of the delay variables, and sf is the vector of final values of the delay variables

- For the simulation of a causal IIR filter realized in direct form II structure use the M-file direct2

Simulation of IIR Filters

- For the simulation of overlap-add filtering method use the M-file fftfilt or the second form of the M-file filter
- For the simulation of tapped cascaded lattice filter structures, use the M-file latcfilt
- The M-files filter, direct2 and latcfilt can also be used to simulate FIR filters
- The M-file filtfilt implements the zero-phase filtering

Discrete Fourier Transform Computation

- The N-point DFT $X[k]$ of a length- N sequence $x[n], 0 \leq n \leq N-1$, is defined by

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad 0 \leq k \leq N-1
$$

where

$$
W_{N}=e^{-j 2 \pi / N}
$$

- Direct computation of all N samples of $\{X[k]\}$ requires N^{2} complex multiplications and $N(N-1)$ complex additions

Goertzel's Algorithm

- A recursive DFT computation scheme that makes use of the identity

$$
W_{N}^{-k N}=1
$$

obtained using the periodicity of $W_{N}^{-k n}$

- Using this identity we can write

$$
\begin{aligned}
X[k] & =\sum_{\ell=0}^{N-1} x[\ell] W_{N}^{k \ell} \\
& =W_{N}^{-k N} \sum_{\ell=0}^{N-1} x[\ell] W_{N}^{k \ell}=\sum_{\ell=0}^{N-1} x[\ell] W_{N}^{-k(N-\ell)}
\end{aligned}
$$

Goertzel's Algorithm

- Define $y_{k}[n]=\sum_{\ell=0}^{n} x_{e}[\ell] W_{N}^{-k(n-\ell)}$
- Note: $y_{k}[n]$ is the direct convolution of the causal sequence

$$
x_{e}[n]=\left\{\begin{array}{cl}
x[n], & 0 \leq n \leq N-1 \\
0, & n<0, n \geq N
\end{array}\right.
$$

with a causal sequence

$$
h_{k}[n]=\left\{\begin{array}{cc}
W_{N}^{-k n}, & n \geq 0 \\
0, & n<0
\end{array}\right.
$$

- Observe $\quad X[k]=y_{k}[n]_{n=N}$

Goertzel's Algorithm

- z-transform of $y_{k}[n]=\sum_{\ell=0}^{n} x_{e}[\ell] W_{N}^{-k(n-\ell)}$ yields
$Y_{k}(z)=\mathcal{Z}\left\{y_{k}[n]\right\}=\frac{X_{e}(z)}{1-W_{N}^{-k} z^{-1}}=H_{k}(z) X_{e}(z)$
where $H_{k}(z)=\mathcal{Z}\left\{h_{k}[n]\right\}=1 /\left(1-W_{N}^{-k} z^{-1}\right)$ and $X_{e}(z)=Z\left\{x_{e}[n]\right\}$
- Thus, $y_{k}[n]$ is the output of an initially relaxed LTI digital filter $H_{k}(z)$ with an input $x_{e}[n]$ and, when $n=N, y_{k}[N]=X[k]$

Goertzel's Algorithm

- Structural interpretation of the algorithm -

- Thus a recursive DFT computation scheme is

$$
y_{k}[n]=x_{e}[n]+W_{N}^{-k} y_{k}[n-1], \quad 0 \leq n \leq N
$$

with $y_{k}[-1]=0$ and $x_{e}[N]=0$

Goertzel's Algorithm

- Since a complex multiplication can be implemented with 4 real multiplications and 2 real additions, computation of each new value of $y_{k}[n]$ requires 4 real multiplications and 4 real additions
- Thus computation of $X[k]=y_{k}[N]$ involves $4 N$ real multiplications and $4 N$ real additions
\longrightarrow Computation of all N DFT samples requires $4 N^{2}$ real multiplications and $4 N^{2}$ real additions

Goertzel's Algorithm

- Recall, direct computation of all N samples of $\{X[k]\}$ requires N^{2} complex multiplications and $N(N-1)$ complex additions
- Equivalently, direct computation of all N samples of $\{X[k]\}$ requires $4 N^{2}$ real multiplications and $N(4 N-2)$ real additions
- Thus, Goertzel's algorithm requires $2 N$ more real additions than the direct DFT computation

Goertzel's Algorithm

- Algorithm can be made computationally more efficient by observing that $H_{k}(z)$ can be rewritten as

$$
\begin{aligned}
H_{k}(z) & =\frac{1}{1-W_{N}^{-k} z^{-1}}=\frac{1-W_{N}^{k} z^{-1}}{\left(1-W_{N}^{-k} z^{-1}\right)\left(1-W_{N}^{k} z^{-1}\right)} \\
& =\frac{1-W_{N}^{k} z^{-1}}{1-2 \cos (2 \pi k / N) z^{-1}+z^{-2}}
\end{aligned}
$$

resulting in a second-order realization

Goertzel's Algorithm

- DFT computation equations are now

$$
v_{k}[n]=x_{e}[n]+2 \cos (2 \pi k / N) v_{k}[n-1]
$$

$$
-v_{k}[n-2], 0 \leq n \leq N
$$

$$
X[k]=y_{k}[N]=v_{k}[N]-W_{N}^{k} v_{k}[N-1]
$$

Goertzel's Algorithm

- Computation of each sample of $v_{k}[n]$ involves only 2 real multiplications and 4 real additions
- Complex multiplication by W_{N}^{k} needs to be performed only once at $n=N$
- Thus, computation of one sample of $X[k]$ requires $(2 N+4)$ real multiplications and $(4 N+4)$ real additions
- Computation of all N DFT samples requires $2 N(N+2)$ real multiplications and $4 N(N+1)$ real additions

Goertzel's Algorithm

- In the realization of $H_{N-k}(z)$, the multiplier in the feedback path is

$$
2 \cos (2 \pi(N-k) / N)=2 \cos (2 \pi k / N)
$$

which is same as that in the realization of $H_{k}(z)$
$\square v_{N-k}[n]=v_{k}[n]$, i.e., the intermediate variables computed to determine $X[k]$ can again be used to determine $X[N-k]$

- Only difference between the two structures is the feed-forward multiplier which is now W_{N}^{-k}, that is the complex conjugate of W_{N}^{k}

Goertzel's Algorithm

- Thus, computation of $X[k]$ and $X[N-k]$ require $2(N+4)$ real multiplications and $4(N+2)$ real additions
- Computation of all N DFT samples require approximately N^{2} real multiplications and approximately $2 N^{2}$ real additions
- Number of real multiplications is about onefourth and number of real additions is about one-half of those needed in direct DFT computation

Decimation-in-Time FFT Algorithm

- Consider a sequence $x[n]$ of length $N=2^{\mu}$
- Using a 2-band polyphase decomposition we can express its z-transform as

$$
X(z)=X_{0}\left(z^{2}\right)+z^{-1} X_{1}\left(z^{2}\right)
$$

where

$$
\begin{aligned}
& X_{0}(z)=\sum_{n=0}^{(N / 2)-1} x_{0}[n] z^{-n}=\sum_{\substack{n=0 \\
(N / 2)-1}} x[2 n] z^{-n} \\
& X_{1}(z)=\sum_{n=0}^{(N / 2)-1} x_{1}[n] z^{-n}=\sum_{n=0}^{(N / 2)-1} x[2 n+1] z^{-n}
\end{aligned}
$$

Decimation-in-Time FFT Algorithm

- Evaluating on the unit circle at N equally spaced points $z=W_{N}^{-k}, 0 \leq k \leq N-1$, we arrive at the N-point DFT of $x[n]$:

$$
\begin{array}{r}
X[k]=X_{0}\left[\langle k\rangle_{N / 2}\right]+W_{N}^{k} X_{1}\left[\langle k\rangle_{N / 2}\right], \\
0 \leq k \leq N-1
\end{array}
$$

where $X_{0}[k]$ and $X_{1}[k]$ are the ($N / 2$)-point DFTs of the ($N / 2$)-length sequences $x_{0}[n]$ and $x_{1}[n]$

Decimation-in-Time FFT

 Algorithm- i.e., $\begin{aligned} & X_{0}[k]=\sum_{r=0}^{(N / 2)-1} x_{0}[r] W_{N / 2}^{r k} \\ & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k}, 0 \leq k \leq \frac{N}{2}-1\end{aligned}$
$X_{1}[k]=\sum_{r=0}^{(N / 2)-1} x_{1}[r] W_{N / 2}^{r k}$
$\sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k}, 0 \leq k \leq \frac{N}{2}-1$

Decimation-in-Time FFT Algorithm

- Block-diagram interpretation

Decimation-in-Time FFT Algorithm

- Flow-graph representation

Decimation-in-Time FFT Algorithm

- Direct computation of the N-point DFT requires N^{2} complex multiplications and $N^{2}-N \approx N^{2}$ complex additions
- Computation of the N-point DFT using the modified scheme requires the computation of two ($N / 2$)-point DFTs that are then combined with N complex multiplications and N complex additions resulting in a total of ($\left.N^{2} / 2\right)+N$ complex multiplications and approximately $\left(N^{2} / 2\right)+N$ complex additions

Decimation-in-Time FFT

Algorithm

- For $N \geq 3$, $\left(N^{2} / 2\right)+N<N^{2}$
- Continuing the process we can express $X_{0}[k]$ and $X_{1}[k]$ as a weighted combination of two (N/4)-point DFTs
- For example, we can write

$$
\begin{array}{r}
X_{0}[k]=X_{00}\left[\langle k\rangle_{N / 4}\right]+W_{N / 2}^{k} X_{01}\left[\langle k\rangle_{N / 4}\right], \\
0 \leq k \leq(N / 2)-1
\end{array}
$$

where $X_{00}[k]$ and $X_{01}[k]$ are the $(N / 4)$ point DFTs of the (N/4)-length sequences $x_{00}[n]=x_{0}[2 n]$ and $x_{01}[n]=x_{0}[2 n+1]$

Decimation-in-Time FFT Algorithm

- Likewise, we can express

$$
\begin{array}{r}
X_{1}[k]=X_{10}\left[\langle k\rangle_{N / 4}\right]+W_{N / 2}^{k} X_{11}\left[\langle k\rangle_{N / 4}\right], \\
0 \leq k \leq(N / 2)-1
\end{array}
$$

where $X_{10}[k]$ and $X_{11}[k]$ are the (N/4)point DFTs of the ($N / 4$)-length sequences $x_{10}[n]=x_{1}[2 n]$ and $x_{11}[n]=x_{1}[2 n+1]$

Decimation-in-Time FFT Algorithm

- Block-diagram representation of the twostage algorithm

$$
X_{0}\left[\langle k\rangle_{N / 2}\right]
$$

Decimation-in-Time FFT Algorithm

- Flow-graph representation

Decimation-in-Time FFT Algorithm

- In the flow-graph shown $N=8$
- Hence, the (N/4)-point DFT here is a 2 point DFT and no further decomposition is possible
- The four 2-point DFTs, $X_{i j}[k], i, j=0,1$ can be easily computed
- For example

$$
X_{00}[k]=x[0]+W_{2}^{k} x[4], \quad k=0,1
$$

Decimation-in-Time FFT Algorithm

- Corresponding flow-graph of the 2-point DFT is shown below obtained using the identity $W_{2}^{k}=W_{N}^{(N / 2) k}$

Decimation-in-Time FFT Algorithm

- Complete flow-graph of the 8 -point DFT is shown below

Decimation-in-Time FFT Algorithm

- The flow-graph consists of 3 stages
- First stage computes the four 2-point DFTs
- Second stage computes the two 4-point DFTs
- Last stage computes the desired 8-point DFT
- The number of complex multiplications and additions at each stage is equal to 8 , the size of the DFT

Decimation-in-Time FFT Algorithm

- Total number of complex multiplications and additions to compute all 8 DFT samples is equal to $8+8+8=24=8 \times 3$
- In the general case when $N=2^{\mu}$, number of stages for the computation of the (2^{μ})-point DFT in the fast algorithm will be $\mu=\log _{2} N$
- Total number of complex multiplications and additions to compute all N DFT samples is $N\left(\log _{2} N\right)$

Decimation-in-Time FFT Algorithm

- In developing the count, multiplications with $W_{N}^{0}=1$ and $W_{N}^{N / 2}=-1$ have been assumed to be complex
- Also the symmetry property of

$$
W_{N}^{(N / 2)+k}=-W_{N}^{k}
$$

has not been taken advantage of

- These properties can be exploited to reduce the computational complexity further

Decimation-in-Time FFT Algorithm

- Examination of the flow-graph

reveals that each stage of the DFT computation process employs the same basic computational module

Decimation-in-Time FFT Algorithm

- In the basic module two output variables are generated by a weighted combination of two input variables as indicated below where $r=1,2, \ldots, \mu$ and $\alpha, \beta=0,1, \ldots, N-1$

- Basic computational module is called a butterfly computation

Decimation-in-Time FFT Algorithm

- Input-output relations of the basic module are:

$$
\begin{aligned}
\Psi_{r+1}[\alpha] & =\Psi_{r}[\alpha]+W_{N}^{\ell} \Psi_{r}[\beta] \\
\Psi_{r+1}[\beta] & =\Psi_{r}[\alpha]+W_{N}^{\ell+(N / 2)} \Psi_{r}[\beta]
\end{aligned}
$$

- Substituting $W_{N}^{\ell+(N / 2)}=-W_{N}^{\ell}$ in the second equation given above we get

$$
\Psi_{r+1}[\beta]=\Psi_{r}[\alpha]-W_{N}^{\ell} \Psi_{r}[\beta]
$$

Decimation-in-Time FFT Algorithm

- Modified butterfly computation requires only one complex multiplication as indicated below

- Use of the above modified butterfly computation module reduces the total number of complex multiplications by 50%

Decimation-in-Time FFT Algorithm

- New flow-graph using the modified butterfly computational module for $N=8$

Decimation-in-Time FFT Algorithm

- Computational complexity can be reduced further by avoiding multiplications by $W_{N}^{0}=1$, $W_{N}^{N / 2}=-1, W_{N}^{N / 4}=j$, and $W_{N}^{3 N / 4}=-j$
- The DFT computation algorithm described here also is efficient with regard to memory requirements
- Note: Each stage employs the same butterfly computation to compute $\Psi_{r+1}[\alpha]$ and $\Psi_{r+1}[\beta]$ from $\Psi_{r}[\alpha]$ and $\Psi_{r}[\beta]$

Decimation-in-Time FFT Algorithm

- At the end of computation at any stage, output variables $\Psi_{r+1}[m]$ can be stored in the same registers previously occupied by the corresponding input variables $\Psi_{r}[m]$
- This type of memory location sharing is called in-place computation resulting in significant savings in overall memory requirements

Decimation-in-Time FFT Algorithm

- In the DFT computation scheme outlined, the DFT samples $X[k]$ appear at the output in a sequential order while the input samples $x[n]$ appear in a different order

Copyright © 2001, S. K. Mitra

Decimation-in-Time FFT Algorithm

- Thus, a sequentially ordered input $x[n]$ must be reordered appropriately before the fast algorithm described by this structure can be implemented
- To understand the input reordering scheme represent the arguments of input samples $x[n]$ and their sequentially ordered new representations $\Psi_{1}[m]$ in binary forms

Decimation-in-Time FFT Algorithm

- The relations between the arguments m and n are as follows:

$m:$	000	001	010	011	100	101	110
$n:$	000	100	010	110	001	101	011
111							

- Thus, if $\left(b_{2} b_{1} b_{0}\right)$ represents the index n of $x[n]$, then the sample $x\left[b_{2} b_{1} b_{0}\right]$ appears at the location $m=b_{0} b_{1} b_{2}$ as $\Psi_{1}\left[b_{0} b_{1} b_{2}\right]$ before the DFT computation is started
- i.e., location of $\Psi_{1}[m]$ is in bit-reversed order from that of $x[n]$

Decimation-in-Time FFT Algorithm

- Alternative forms of the fast DFT algorithms can be obtained by reordering the computations such as input in normal order and output in bit-reversed order, and both input and output in normal order
- The fast algorithm described assumes that the length of $x[n]$ is a power of 2
- If it is not, the length can be extended by zero-padding and make the length a power of 2

Decimation-in-Time FFT Algorithm

- Even after zero-padding, the DFT computation based on the fast algorithm may be computationally more efficient than a direct DFT computation of the original shorter sequence
- The fast DFT computation schemes described are called decimation-in-time (DIT) fast Fourier transform (FFT) algorithms as input $x[n]$ is first decimated to form a set of subsequences before the DFT is computed

Decimation-in-Time FFT Algorithm

- For example, the relation between $x[n]$ and its even and odd parts, $x_{0}[n]$ and $x_{1}[n]$, generated by the first stage of the DIT algorithm is given by
$x[n]: x[0] \quad x[1] \quad x[2] \quad x[3] \quad x[4] \quad x[5] \quad x[6] \quad x[7]$
$x_{0}[n]: x[0] \quad x[2] \quad x[4] \quad x[6]$
$x_{1}[n]: x[1] \quad x[3] \quad x[5] \quad x[7]$

Decimation-in-Time FFT Algorithm

- Likewise, the relation between $x[n]$ and the sequences $x_{00}[n], x_{01}[n], x_{10}[n]$, and $x_{11}[n]$, generated by the two-stage decomposition of the DIT algorithm is given by
$x[n]: x[0] \quad x[1] \quad x[2] \quad x[3] \quad x[4] \quad x[5] \quad x[6] \quad x[7]$
$x_{00}[n]: x[0]$
$x_{01}[n]: x[2]$
$x_{10}[n]: x[1]$
$x_{11}[n]: x[3]$
$x[4]$
$x[6]$
$x[5]$
$x[7]$

Decimation-in-Time FFT Algorithm

- The subsequences $x_{00}[n], x_{01}[n], x_{10}[n]$, and $x_{11}[n]$ can be generated directly by a factor-of-4 decimation process leading to a singlestage decomposition as shown on the next slide

Decimation-in-Time FFT Algorithm

Decimation-in-Time FFT Algorithm

- Radix-R FFT algorithm - A each stage the decimation is by a factor of R
- Depending on N, various combinations of decompositions of $X[k]$ can be used to develop different types of DIT FFT algorithms
- If the scheme uses a mixture of decimations by different factors, it is called a mixed radix FFT algorithm

Decimation-in-Time FFT Algorithm

- For N which is a composite number expressible in the form of a product of integers:

$$
N=r_{1} \cdot r_{2} \cdots r_{v}
$$

total number of complex multiplications (additions) in a DIT FFT algorithm based on a v-stage decomposition is given by

$$
\left(\sum_{i=1}^{v} r_{i}-v\right) N
$$

Decimation-in-Frequency FFT Algorithm

- Consider a sequence $x[n]$ of length $N=2^{\mu}$
- Its z-transform can be expressed as

$$
X(z)=X_{a}(z)+z^{-N / 2} X_{b}(z)
$$

where

$$
\begin{aligned}
& X_{a}(z)=\sum_{n=0}^{(N / 2)-1} x[n] z^{-n} \\
& X_{b}(z)=\sum_{n=0}^{(N / 2)-1} x\left[\frac{N}{2}+n\right] z^{-n}
\end{aligned}
$$

Decimation-in-Frequency FFT Algorithm

- Evaluating $X(z)$ on the unit circle at we get

$$
\begin{aligned}
X[k]= & \sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{n k} \\
& +W_{N}^{(N / 2) k} \sum_{n=0}^{(N / 2)-1} x\left[\frac{N}{2}+n\right] W_{N}^{n k}
\end{aligned}
$$

which can be rewritten using the identity $W_{N}^{(N / 2) k}=(-1)^{k}$ as

$$
X[k]=\sum_{n=0}^{(N / 2)-1}\left(x[n]+(-1)^{k} x\left[\frac{N}{2}+n\right]\right) W_{N}^{n k}
$$

Decimation-in-Frequency FFT Algorithm

- For k even

$$
\begin{aligned}
& X[2 \ell]=\sum_{n=0}^{(N / 2)-1}\left(x[n]+x\left[\frac{N}{2}+n\right]\right) W_{N}^{2 n \ell} \\
= & \sum_{n=0}^{(N / 2)-1}\left(x[n]+x\left[\frac{N}{2}+n\right]\right) W_{N / 2}^{n \ell}, \quad 0 \leq \ell \leq \frac{N}{2}-1
\end{aligned}
$$

- For k odd

$$
\begin{aligned}
& X[2 \ell+1]=\sum_{n=0}^{(N / 2)-1}\left(x[n]-x\left[\frac{N}{2}+n\right]\right) W_{N}^{n(2 \ell+1)} \\
= & \sum_{n=0}^{(N / 2)-1}\left(x[n]-x\left[\frac{N}{2}+n\right]\right) W_{N}^{n} W_{N / 2}^{n \ell}, \quad 0 \leq \ell \leq \frac{N}{2}-1
\end{aligned}
$$

Decimation-in-Frequency FFT Algorithm

- We can write

$$
\begin{aligned}
X[2 \ell] & =\sum_{n=0}^{(N / 2)-1} x_{0}[n] W_{N}^{n(2 \ell)} \\
X[2 \ell+1] & =\sum_{n=0}^{(N / 2)-1} x_{1}[n] W_{N}^{n(2 \ell)}, 0 \leq \ell \leq \frac{N}{2}-1
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{0}[n]=\left(x[n]+x\left[\frac{N}{2}+n\right]\right), \\
& x_{1}[n]=\left(x[n]-x\left[\frac{N}{2}+n\right]\right) W_{N}^{n}, \quad 0 \leq n \leq \frac{N}{2}-1
\end{aligned}
$$

Decimation-in-Frequency FFT Algorithm

- Thus $X[2 \ell]$ and $X[2 \ell+1]$ are the $(N / 2)$ point DFTs of the length-($N / 2$) sequences $x_{0}[n]$ and $x_{1}[n]$
- Flow-graph of the first-stage of the DFT algorithm is shown below

Decimation-in-Frequency FFT Algorithm

- Here the input samples are in sequential order, while the output DFT samples appear in a decimated form with the even-indexed samples appearing as the output of one (N/2)-point DFT and the odd-indexed samples appearing as the output of the other (N/2)-point DFT

Decimation-in-Frequency FFT Algorithm

- We next express the even- and odd-indexed samples of each one of the two (N/2)-point DFTs as a sum of two (N/4)-point DFTs
- Process is continued until the smallest DFTs are 2-point DFTs

Decimation-in-Frequency FFT Algorithm

- Complete flow-graph of the decimation-infrequency FFT computation scheme for $N=8$

Decimation-in-Frequency FFT Algorithm

- Computational complexity of the radix-2 DIF FFT algorithm is same as that of the DIT FFT algorithm
- Various forms of DIF FFT algorithm can similarly be developed
- The DIT and DIF FFT algorithms described here are often referred to as the CooleyTukey FFT algorithms

Inverse DFT Computation

- An FFT algorithm for computing the DFT samples can also be used to calculate efficiently the inverse DFT (IDFT)
- Consider a length $-N$ sequence $x[n]$ with an N-point DFT $X[k]$
- Recall

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-n k}
$$

Inverse DFT Computation

- Multiplying both sides by N and taking the complex conjugate we get

$$
N x^{*}[n]=\sum_{k=0}^{N-1} X *[k] W_{N}^{n k}
$$

- Right-hand side of above is the N-point DFT of a sequence $X^{*}[k]$

Inverse DFT Computation

- Desired IDFT $x[n]$ is then obtained as

$$
x[n]=\frac{1}{N}\left\{\sum_{k=0}^{N-1} X *[k] W_{N}^{n k}\right\}^{*}
$$

- Inverse DFT computation is shown below:

