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Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• A digital filter structure can be described in
the time-domain by a set of equations
relating the output sequence to the input
sequence and, in some cases, one or more
internally generated sequences

• Consider
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Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• This structure, in the time-domain, is
described by the set of equations

]1[][ 45 −= nwnw

][][][ 51 nwnxnw α−=
][][][ 312 nwnwnw δ−=

]1[][ 23 −= nwnw
][][][ 234 nwnwnw ε+=

][][][ 51 nwnwny γβ +=
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Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• The equations cannot be implemented in the
order  shown with each variable on the left
side computed before the variable below is
computed

• For example, computation of           in the
1st step requires the knowledge of
which is computed in the 5th step

• Likewise, computation of            in the 2nd
step requires the knowledge of           that is
computed in the 3rd step

][1 nw
][5 nw

][2 nw
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Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• This ordered set of equations is said to be
noncomputable

• Suppose we reorder these equations
]1[][ 23 −= nwnw
]1[][ 45 −= nwnw

][][][ 51 nwnxnw α−=
][][][ 312 nwnwnw δ−=

][][][ 51 nwnwny γβ +=
][][][ 234 nwnwnw ε+=
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Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• This ordered set of equations is computable
• In most practical applications, equations

describing a digital filter structure can be
put into a computable order by inspection

• A simple way to examine the computability
of equations describing a digital filter
structure is by writing the equations in a
matrix form
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Matrix RepresentationMatrix Representation
• A matrix representation of the first ordered

set of equations is
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Matrix RepresentationMatrix Representation
• In compact form
         y[n] = x[n] + F y[n] + G y[n - 1]

where
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Matrix RepresentationMatrix Representation
• For the computation of present value of a

particular signal variable, nonzero entries in
the corresponding rows of matrices F and G
determine the variables whose present and
previous values are needed

• If a diagonal element of F is nonzero, then
computation of present value of the
corresponding variable requires the
knowledge of its present value implying
presence of a delay-free loop
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Matrix RepresentationMatrix Representation
• Any nonzero entries in the same row above

the main diagonal of F imply that the
computation of present value of the
corresponding variable requires present
values of other variables not yet computed,
making the set of equations noncomputable

• Hence, for computability all elements of F
matrix on the diagonal and above diagonal
must be zeros
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Matrix RepresentationMatrix Representation

• In the F matrix for the first ordered set of
equations, diagonal elements are all zeros,
indicating absence of delay-free loops

• However, there are nonzero entries above
the diagonal in the first and second rows of
F indicating that the set of equations are not
in proper order for computation
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Matrix RepresentationMatrix Representation
• The F matrix for the second ordered set of

equations is

which is seen to satisfy the computability
condition
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Precedence GraphPrecedence Graph
• The precedence graph can be used to test

the computability of a digital filter structure
and to develop the proper ordering sequence
for a  set of equations describing a
computable structure

• It is developed from the signal-flow graph
description of the digital filter structure in
which independent and dependent signal
variables are represented by nodes, and the
multiplier and delay branches are
represented by directed branches
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Precedence GraphPrecedence Graph

• The directed branch has an attached symbol
denoting the branch gain or transmittance

• For a multiplier branch, the branch gain is
the multiplier coefficient value

• For a delay branch, the branch gain is
simply 1−z
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Precedence GraphPrecedence Graph
• The signal-flow graph representation of

is shown below
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Precedence GraphPrecedence Graph
• A reduced signal-flow graph is then

developed by removing the delay branches
and all branches going out of the input node

• The reduced signal-flow graph of the example
digital filter structure is shown below
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Precedence GraphPrecedence Graph

• The remaining nodes in the reduced signal-
flow graph are grouped as follows:

• All nodes with only outgoing branches are
grouped into one set labeled

• Next, the set           is formed containing
nodes coming in only from one or more
nodes in the set           and have outgoing
branches to the other nodes

{ }1N
{ }2N

{ }1N
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Precedence GraphPrecedence Graph
• Then, form the set            containing nodes

that have branches coming in only from one
or more nodes in the sets          and           ,
and have outgoing branches to other nodes

• Continue the process until there is a set of
nodes            containing only incoming
branches

• The rearranged signal-flow graph is called a
precedence graph

{ }2N{ }1N

{ }3N

}{ fN
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Precedence GraphPrecedence Graph

• Since signal variables belonging to           do
not depend on the present values of other
signal variables, these variables should be
computed first

• Next, signal variables belonging to
can be computed since they depend on the
present values of signal variables contained
in             that have already been computed

}{ 1N

}{ 1N

}{ 2N
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Precedence GraphPrecedence Graph
• This is followed by the computation of

signal variables in           ,            , etc.
• Finally, in the last step the signal variables

in           are computed
• This process of sequential computation

ensures the development of a valid
computational algorithm

• If there is no final set           containing only
incoming branches, the digital filter
structure is noncomputable

}{ 3N }{ 4N

}{ fN

}{ fN
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Precedence GraphPrecedence Graph

• For the example precedence graph,
pertinent groupings of node variables are:

]}[],[{}{ 531 nwnw=N
]}[{}{ 12 nw=N
]}[{}{ 23 nw=N

]}[],[{}{ 44 nynw=N
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Precedence GraphPrecedence Graph
• Precedence graph redrawn according to the

above groupings is as shown below

• Since the final node set            has  only
incoming branches, the structure is
computable

}{ 4N
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Structure VerificationStructure Verification
• A simple method to verify that the structure

developed is indeed characterized by the
prescribed transfer function H(z)

• Consider for simplicity a causal 3rd order
IIR transfer function

• If {h[n]} denotes its impulse response, then
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Structure VerificationStructure Verification
• Note     P(z) = H(z)D(z)

which is equivalent to
• Evaluate above convolution sum for               :

1,][ 0
0

== ∑
=

− ddkhp
n

k
knn

]0[0 hp =
11 ]0[]1[ dhhp +=

212 ]0[]1[]2[ dhdhhp ++=
3213 ]0[]1[]2[]3[ dhdhdhhp +++=
321 ]1[]2[]3[]4[0 dhdhdhh +++=
321 ]2[]3[]4[]5[0 dhdhdhh +++=
321 ]3[]4[]5[]6[0 dhdhdhh +++=

60 ≤≤ n
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Structure VerificationStructure Verification
• In matrix form we get

• In partitioned form above matrix equation
can be written as
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Structure VerificationStructure Verification
where

• Solving second equation we get

• Substituting above in the first equation we
get

• In the case of an N-th order IIR filter, the
coefficients of its transfer function can be
determined from the first 2N+1  impulse
response samples

,1
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Structure VerificationStructure Verification
• Example - Consider the causal transfer

function

• Here

• Hence
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Structure VerificationStructure Verification

• Solving we get

and
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Structure Simulation andStructure Simulation and
Verification Using MATLABVerification Using MATLAB

• For computer simulation, the structure is
described in the form of a set of equations

• These equations must be ordered properly
to ensure computability

• The procedure is to express the output of
each adder and filter output variable in
terms of all incoming signal variables
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Structure Simulation andStructure Simulation and
Verification Using MATLABVerification Using MATLAB

• Consider the structure

• A valid computational algorithm involving
the least number of equations is

],1[][][ 41 −−= nwnxnw α
],1[][][ 212 −−= nwnwnw δ
],[]1[][ 224 nwnwnw ε+−=

]1[][][ 41 −+= nwnwny γβ
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Structure Simulation andStructure Simulation and
Verification Using MATLABVerification Using MATLAB

• This set of equations is evaluated for
increasing values of n starting at n = 0

• At the beginning, the initial conditions
and              can be set to any desired values,
which are typically zero

• From the computed impulse response
samples, the structure can be verified by
determining the transfer function
coefficients using the M-file strucver

]1[2 −w
]1[4 −w
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Simulation of IIR FiltersSimulation of IIR Filters
• The M-file filter implements the IIR

filter in the transposed direct form II
structure shown below for a 3rd order filter

• As indicated in the figure, d(1) has been
assumed to be equal to 1
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Simulation of IIR FiltersSimulation of IIR Filters
• Basic forms of this function are
     y = filter(num,den,x)
     [y,sf]=filter(num,den,x,si)

where x is the input vector, y is the output
vector, si is the vector of initial conditions
of the delay variables, and sf is the vector
of final values of the delay variables

• For the simulation of a causal IIR filter
realized in direct form II structure use the
M-file direct2
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Simulation of IIR FiltersSimulation of IIR Filters
• For the simulation of overlap-add filtering

method use the M-file fftfilt or the
second form of the M-file filter

• For the simulation of tapped cascaded
lattice filter structures, use the M-file
latcfilt

• The M-files filter, direct2 and
latcfilt can also be used to simulate
FIR filters

• The M-file filtfilt implements the
zero-phase filtering
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Discrete Fourier TransformDiscrete Fourier Transform
ComputationComputation

• The N-point DFT X[k] of a length-N
sequence x[n],                     , is defined by

where

• Direct computation of all N samples of
{X[k]} requires       complex multiplications
and                complex additions

10 −≤≤ Nn
10,][][ 1

0 −≤≤=∑ −
= NkWnxkX N

n
kn
N

)1( −NN

Nj
N eW /2π−=

2N
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Goertzel’sGoertzel’s Algorithm Algorithm
• A recursive DFT computation scheme that

makes use of the identity

obtained using the periodicity of
• Using this identity we can write
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Goertzel’sGoertzel’s Algorithm Algorithm
• Define
• Note:            is the direct convolution of the

causal sequence

with a causal sequence

• Observe

∑= =
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Goertzel’sGoertzel’s Algorithm Algorithm
• z-transform of

yields

where
and

• Thus,            is the output of an initially
relaxed LTI digital filter            with an
input           and, when n = N,

∑= =
−−n nk

Nek Wxny 0
)(][][ l
ll

)1/(1]}[{)( 1−−−== zWnhzH k
Nkk Z

]}[{)( nxzX ee Z=
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e
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][nyk

][][ kXNyk =
)(zHk
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Goertzel’sGoertzel’s Algorithm Algorithm
• Structural interpretation of the algorithm -

• Thus a recursive DFT computation scheme
is

with                   and

NnnyWnxny k
k

Nek ≤≤−+= − 0],1[][][

0]1[ =−ky 0][ =Nxe



Copyright © 2001, S. K. Mitra39

Goertzel’sGoertzel’s Algorithm Algorithm
• Since a complex multiplication can be

implemented with 4 real multiplications and
2 real additions, computation of each new
value of           requires 4 real
multiplications and 4 real additions

• Thus computation of                        involves
4N real multiplications and 4N real
additions
           Computation of all N DFT samples
requires          real multiplications and
real additions

][][ NykX k=

][nyk

24N 24N
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Goertzel’sGoertzel’s Algorithm Algorithm
• Recall, direct computation of all N samples of

{X[k]} requires       complex multiplications
and                complex additions

• Equivalently, direct computation of all N
samples of {X[k]} requires          real
multiplications and                   real additions

• Thus, Goertzel’s algorithm requires 2N more
real additions than the direct DFT
computation

2N
)1( −NN

)24( −NN

24N
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Goertzel’sGoertzel’s Algorithm Algorithm
• Algorithm can be made computationally

more efficient by observing that             can
be rewritten as

resulting in a second-order realization
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Goertzel’sGoertzel’s Algorithm Algorithm

• DFT computation equations are now
]1[)/2cos(2][][ −π+= nvNknxnv kek

Nnnvk ≤≤−− 0],2[
]1[][][][ −−== NvWNvNykX k

k
Nkk
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Goertzel’sGoertzel’s Algorithm Algorithm
• Computation of each sample of

involves only 2 real multiplications and 4
real additions

• Complex multiplication by           needs to
be performed only once at n = N

• Thus, computation of one sample of X[k]
requires                 real multiplications and

real additions
• Computation of all N DFT samples requires

             real multiplications and
   real additions

k
NW

)42( +N
)44( +N

)1(4 +NN
)2(2 +NN

][nvk
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Goertzel’sGoertzel’s Algorithm Algorithm
• In the realization of               , the multiplier

in the feedback path is

which is same as that in the realization of
                                 i.e., the intermediate

variables computed to determine X[k] can
again be used to determine

• Only difference between the two structures
is the feed-forward multiplier which is now

   that is the complex conjugate of

)(zH kN−

)(zHk

)/2cos(2)/)(2cos(2 NkNkN ππ =−

],[][ nvnv kkN =−

][ kNX −

,k
NW − k
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Goertzel’sGoertzel’s Algorithm Algorithm
• Thus, computation of X[k] and

require 2(N+4) real multiplications and
4(N+2) real additions

• Computation of all N DFT samples require
approximately       real multiplications and
approximately         real additions

• Number of real multiplications is about one-
fourth and number of real additions is about
one-half of those needed in direct DFT
computation

][ kNX −

2N
22N
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Consider a sequence x[n] of length
• Using a 2-band polyphase decomposition

we can express its z-transform as

where
)()()( 2

1
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Evaluating on the unit circle at N equally
spaced points                                         we
arrive at the N-point DFT of x[n]:

where            and           are the (N/2)-point
DFTs of the (N/2)-length sequences        
and

,10, −≤≤= − NkWz k
N

],[][][ 2/12/0 N
k
NN kXWkXkX 〉〈+〉〈=

10 −≤≤ Nk
][0 kX ][1 kX

][1 nx
][0 nx
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• i.e.,
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Block-diagram interpretation

k
NW
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Flow-graph representation
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Direct computation of the N-point DFT
requires       complex multiplications and

                   complex additions
• Computation of the N-point DFT using the

modified scheme requires the computation of
two (N/2)-point DFTs that are then combined
with N complex multiplications and N
complex additions resulting in a total of

     complex multiplications and
approximately                 complex additions

2N
22 NNN ≈−

NN +)2/( 2

NN +)2/( 2
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• For
• Continuing the process we can express

and             as a weighted combination of
two (N/4)-point DFTs

• For example, we can write

where              and            are the (N/4)-
point DFTs of the (N/4)-length sequences

                    and

22 )2/(,3 NNNN <+≥

][1 kX
][0 kX

],[][][ 4/012/4/000 N
k
NN kXWkXkX 〉〈+〉〈=

1)2/(0 −≤≤ Nk
][00 kX ][01 kX

]2[][ 000 nxnx = ]12[][ 001 += nxnx
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Likewise, we can express

where              and            are the (N/4)-
point DFTs of the (N/4)-length sequences

                    and

],[][][ 4/112/4/101 N
k
NN kXWkXkX 〉〈+〉〈=

1)2/(0 −≤≤ Nk
][10 kX ][11 kX

]12[][ 111 += nxnx]2[][ 110 nxnx =
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Block-diagram representation of the two-
stage algorithm
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Flow-graph representation
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• In the flow-graph shown N =8
• Hence, the (N/4)-point DFT here is a 2-

point DFT and no further decomposition is
possible

• The four 2-point DFTs,
can be easily computed

• For example
1,0],4[]0[][ 200 =+= kxWxkX k

1,0,],[ =jikXij
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Corresponding flow-graph of the 2-point
DFT is shown below obtained using the
identity kN

N
k WW )2/(

2 =
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Complete flow-graph of the 8-point DFT is
shown below
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• The flow-graph consists of 3 stages
• First stage computes the four 2-point DFTs
• Second stage computes the two 4-point DFTs
• Last stage computes the desired 8-point DFT
• The number of complex multiplications and

additions at each stage is equal to 8, the size
of the DFT
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Total number of complex multiplications
and additions to compute all 8 DFT samples
is equal to 8 + 8 + 8 = 24 =

• In the general case when             , number of
stages for the computation of the (     )-point
DFT in the fast algorithm will be

• Total number of complex multiplications
and additions to compute all N DFT
samples is )(log2 NN

µ2

µ2=N

N2log=µ

38×
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• In developing the count, multiplications
with              and                      have been
assumed to be complex

• Also the symmetry property of

has not been taken advantage of
• These properties can be exploited to reduce

the computational complexity further

10 =NW 12/ −=N
NW

k
N

kN
N WW −=+)2/(
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Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Examination of the flow-graph

reveals that each stage of the DFT
computation process employs the same
basic computational module
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• In the basic module two output variables are
generated by a weighted combination of
two input variables as indicated below
where                      and

• Basic computational module is called a
butterfly computation

µ,,2,1 K=r 1,,1,0, −=βα NK
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• Input-output relations of the basic module
are:

• Substituting                              in the second
equation given above we get

][][][1 βαα rNrr W Ψ+Ψ=Ψ +
l

][][][ )2/(
1 βαβ r

N
Nrr W Ψ+Ψ=Ψ +

+
l
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l
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N
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• Modified butterfly computation requires
only one complex multiplication as
indicated below

• Use of the above modified butterfly
computation module reduces the total
number of complex multiplications by 50%
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• New flow-graph using the modified
butterfly computational module for N = 8
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• Computational complexity can be reduced
further by avoiding multiplications by            ,

             ,                  ,  and
• The DFT computation algorithm described

here also is efficient with regard to memory
requirements

• Note: Each stage employs the same butterfly
computation to compute               and
from            and

10 =NW
12/ −=N

NW jW N
N =4/ jW N

N −=4/3

][1 α+Ψr ][1 β+Ψr
][βrΨ][αrΨ
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• At the end of computation at any stage,
output variables              can be stored in the
same registers previously occupied by the
corresponding input variables

• This type of memory location sharing is
called in-place computation resulting in
significant savings in overall memory
requirements

][1 mr+Ψ

][mrΨ
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• In the DFT computation scheme outlined,
the DFT samples X[k] appear at the output
in a sequential order while the input
samples x[n] appear in a  different order



Copyright © 2001, S. K. Mitra70

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Thus, a sequentially ordered input x[n] must
be reordered appropriately before the fast
algorithm described by this structure can be
implemented

• To understand the input reordering scheme
represent the arguments of input samples
x[n] and their sequentially ordered new
representations             in binary forms][1 mΨ
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• The relations between the arguments m  and
n are as follows:

• Thus, if (         ) represents the index n of
x[n], then the sample                 appears at
the location                   as                   before
the DFT computation is started

• i.e., location of            is in bit-reversed
order from that of x[n]

111011101001110010100000:
111110101100011010001000:

n
m

012 bbb
][ 012 bbbx

210 bbbm = ][ 2101 bbbΨ

][1 mΨ
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• Alternative forms of the fast DFT
algorithms can be obtained by reordering
the computations such as input in normal
order and output in bit-reversed order, and
both input and output in normal order

• The fast algorithm described assumes that
the length of x[n] is a power of 2

• If it is not, the length can be extended by
zero-padding and make the length a power
of 2
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• Even after zero-padding, the DFT
computation based on the fast algorithm
may be computationally more efficient than
a direct DFT computation of the original
shorter sequence

• The fast DFT computation schemes
described are called decimation-in-time
(DIT) fast Fourier transform (FFT)
algorithms as input x[n] is first decimated to
form a set of subsequences before the DFT
is computed
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• For example, the relation between x[n] and
its even and odd parts,           and          ,
generated by the first stage of the DIT
algorithm is given by

]7[]5[]3[]1[:][
]6[]4[]2[]0[:][

]7[]6[]5[]4[]3[]2[]1[]0[:][
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0
xxxxnx
xxxxnx

xxxxxxxxnx
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• Likewise, the relation between x[n] and the
sequences           ,           ,          , and          ,
generated by the two-stage decomposition
of the DIT algorithm is given by

][00 nx ][01 nx ][11 nx][10 nx
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• The subsequences           ,           ,          , and
     can be generated directly by a factor-

of-4 decimation process leading to a single-
stage decomposition as shown on the next
slide

][00 nx ][01 nx ][10 nx
][11 nx
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• Radix-R FFT algorithm - A each stage the
decimation is by a factor of R

• Depending on N, various combinations of
decompositions of X[k] can be used to
develop different types of DIT FFT
algorithms

• If the scheme uses a mixture of decimations
by different factors, it is called a mixed
radix FFT algorithm
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• For N which is a composite number
expressible in the form of a product of
integers:

total number of complex multiplications
(additions) in a DIT FFT algorithm based
on a     -stage decomposition is given byν

νrrrN L21 ⋅=

Nr
i

i 
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• Consider a sequence x[n] of length
• Its z-transform can be expressed as

where

µ2=N
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• Evaluating X(z) on the unit circle at
we get

which can be rewritten using the identity
                      as
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• For k even

• For k odd
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• We can write

where
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• Thus             and                 are the (N/2)-
point DFTs of the length-(N/2) sequences

     and
• Flow-graph of the first-stage of the DFT

algorithm is shown below

]2[ lX ]12[ +lX
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• Here the input samples are in sequential
order, while the output DFT samples appear
in a decimated form with the even-indexed
samples appearing as the output of one
(N/2)-point DFT and the odd-indexed
samples appearing as the output of the other
(N/2)-point DFT
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• We next express the even- and odd-indexed
samples of each one of the two (N/2)-point
DFTs as a sum of two (N/4)-point DFTs

• Process is continued until the smallest DFTs
are 2-point DFTs
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• Complete flow-graph of the decimation-in-
frequency FFT computation scheme for N = 8
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• Computational complexity of the radix-2
DIF FFT algorithm is same as that of the
DIT FFT algorithm

• Various forms of DIF FFT algorithm can
similarly be developed

• The DIT and DIF FFT algorithms described
here are often referred to as the Cooley-
Tukey FFT algorithms
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• An FFT algorithm for computing the DFT
samples can also be used to calculate
efficiently the inverse DFT (IDFT)

• Consider a length-N sequence x[n] with an
N-point DFT X[k]

• Recall
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• Multiplying both sides by N and taking the
complex conjugate we get

• Right-hand side of above is the N-point
DFT of a sequence X*[k]
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• Desired IDFT x[n] is then obtained as

• Inverse DFT computation is shown below:
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