## Polyphase Decomposition

## The Decomposition

- Consider an arbitrary sequence $\{x[n]\}$ with a $z$-transform $X(z)$ given by

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- We can rewrite $X(z)$ as

$$
X(z)=\sum_{k=0}^{M-1} z^{-k} X_{k}\left(z^{M}\right)
$$

where

$$
\begin{gathered}
X_{k}(z)=\sum_{n=-\infty}^{\infty} x_{k}[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[M n+k] z^{-n} \\
0 \leq k \leq M-1
\end{gathered}
$$

## Polyphase Decomposition

- The subsequences $\left\{x_{k}[n]\right\}$ are called the polyphase components of the parent sequence $\{x[n]\}$
- The functions $X_{k}(z)$, given by the $z$-transforms of $\left\{x_{k}[n]\right\}$, are called the polyphase components of $X(z)$


## Polyphase Decomposition

- The relation between the subsequences $\left\{x_{k}[n]\right\}$ and the original sequence $\{x[n]\}$ are given by

$$
x_{k}[n]=x[M n+k], \quad 0 \leq k \leq M-1
$$

- In matrix form we can write

$$
X(z)=\left[\begin{array}{llll}
1 & z^{-1} & \cdots & z^{-(M-1)}
\end{array}\right]\left[\begin{array}{c}
X_{1}\left(z^{M}\right) \\
\vdots \\
X_{M-1}\left(z^{M}\right)
\end{array}\right]
$$

Copyright © 2001, S. K. Mitra

## Polyphase Decomposition

- A multirate structural interpretation of the polyphase decomposition is given below



## Polyphase Decomposition

- The polyphase decomposition of an FIR transfer function can be carried out by inspection
- For example, consider a length-9 FIR transfer function:

$$
H(z)=\sum_{n=0}^{8} h[n] z^{-n}
$$

## Polyphase Decomposition

- Its 4-branch polyphase decomposition is given by
$H(z)=E_{0}\left(z^{4}\right)+z^{-1} E_{1}\left(z^{4}\right)+z^{-2} E_{2}\left(z^{4}\right)+z^{-3} E_{3}\left(z^{4}\right)$
where

$$
\begin{aligned}
E_{0}(z) & =h[0]+h[4] z^{-1} \\
E_{1}(z) & =h[1]+h[5] z^{-1} \\
E_{2}(z) & =h[2]+h[6] z^{-1} \\
E_{3}(z) & =h[3]+h[7] z^{-1}
\end{aligned}
$$



## Polyphase Decomposition

- The polyphase decomposition of an IIR transfer function $H(z)=P(z) / D(z)$ is not that straight forward
- One way to arrive at an $M$-branch polyphase decomposition of $H(z)$ is to express it in the form $P^{\prime}(z) / D^{\prime}\left(z^{M}\right)$ by multiplying $P(z)$ and $D(z)$ with an appropriately chosen polynomial and then apply an $M$-branch polyphase decomposition to $P^{\prime}(z)$


## Polyphase Decomposition

- Example - Consider

$$
H(z)=\frac{1-2 z^{-1}}{1+3 z^{-1}}
$$

- To obtain a 2-band polyphase decomposition we rewrite $H(z)$ as
$H(z)=\frac{\left(1-2 z^{-1}\right)\left(1-3 z^{-1}\right)}{\left(1+3 z^{-1}\right)\left(1-3 z^{-1}\right)}=\frac{1-5 z^{-1}+6 z^{-2}}{1-9 z^{-2}}=\frac{1+6 z^{-2}}{1-9 z^{-2}}+\frac{-5 z^{-1}}{1-9 z^{-2}}$
- Therefore,

$$
H(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right)
$$

where

$$
E_{0}(z)=\frac{1+6 z^{-1}}{1-9 z^{-1}}, \quad E_{1}(z)=\frac{-5}{1-9 z^{-1}}
$$

## Polyphase Decomposition

- Note: The above approach increases the overall order and complexity of $H(z)$
- However, when used in certain multirate structures, the approach may result in a more computationally efficient structure
- An alternative more attractive approach is discussed in the following example


## Polyphase Decomposition

- Example - Consider the transfer function of a 5-th order Butterworth lowpass filter with a $3-\mathrm{dB}$ cutoff frequency at $0.5 \pi$ :

$$
H(z)=\frac{0.0527864\left(1+z^{-1}\right)^{5}}{1+0.633436854 z^{-2}+0.0557281 z^{-2}}
$$

- It is easy to show that $H(z)$ can be expressed as

$$
H(z)=\frac{1}{2}\left[\left(\frac{0.105573+z^{-2}}{1+0.105573 z^{-2}}\right)+z^{-1}\left(\frac{0.52786+z^{-2}}{1+0.52786 z^{-2}}\right)\right]
$$

## Polyphase Decomposition

- Therefore $H(z)$ can be expressed as

$$
H(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right)
$$

where

$$
\begin{aligned}
& E_{0}(z)=\frac{1}{2}\left(\frac{0.105573+z^{-1}}{1+0.105573 z^{-1}}\right) \\
& E_{1}(z)=\frac{1}{2}\left(\frac{0.52786+z^{-1}}{1+0.52786 z^{-1}}\right)
\end{aligned}
$$

## Polyphase Decomposition

- Note: In the above polyphase decomposition, branch transfer functions $E_{i}(z)$ are stable allpass functions
- Moreover, the decomposition has not increased the order of the overall transfer function $H(z)$


# FIR Filter Structures Based on Polyphase Decomposition 

- We shall demonstrate later that a parallel realization of an FIR transfer function $H(z)$ based on the polyphase decomposition can often result in computationally efficient multirate structures
- Consider the $M$-branch Type I polyphase decomposition of $H(z)$ :

$$
H(z)=\sum_{k=0}^{M-1} z^{-k} E_{k}\left(z^{M}\right)
$$

## FIR Filter Structures Based on Polyphase Decomposition

- A direct realization of $H(z)$ based on the Type I polyphase decomposition is shown below



## FIR Filter Structures Based on Polyphase Decomposition

- The transpose of the Type I polyphase FIR filter structure is indicated below



## FIR Filter Structures Based on Polyphase Decomposition

- An alternative representation of the transpose structure shown on the previous slide is obtained using the notation

$$
R_{\ell}\left(z^{M}\right)=E_{M-1-\ell}\left(z^{M}\right), \quad 0 \leq \ell \leq M-1
$$

- Substituting the above notation in the Type I polyphase decomposition we arrive at the Type II polyphase decomposition:

$$
H(z)=\sum_{\ell=0}^{M-1} z^{-(M-1-\ell)} R_{\ell}\left(z^{M}\right)
$$

## FIR Filter Structures Based on Polyphase Decomposition

- A direct realization of $H(z)$ based on the Type II polyphase decomposition is shown below



## Computationally Efficient Decimators

- Consider first the single-stage factor-of- $M$ decimator structure shown below

$$
x[n] \rightarrow H(z) \xrightarrow{v[n]} \rightarrow y \rightarrow y[n]
$$

- We realize the lowpass filter $H(z)$ using the Type I polyphase structure as shown on the next slide


## Computationally Efficient Decimators

- Using the cascade equivalence \#1 we arrive at the computationally efficient decimator structure shown below on the right


Decimator structure based on Type I polyphase decomposition

## Computationally Efficient Decimators

- To illustrate the computational efficiency of the modified decimator structure, assume $H(z)$ to be a length- $N$ structure and the input sampling period to be $T=1$
- Now the decimator output $y[n]$ in the original structure is obtained by downsampling the filter output $v[n]$ by a factor of M


## Computationally Efficient Decimators

- It is thus necessary to compute $v[n]$ at

$$
n=\ldots,-2 M,-M, 0, M, 2 M, \ldots
$$

- Computational requirements are therefore $N$ multiplications and ( $N-1$ ) additions per output sample being computed
- However, as $n$ increases, stored signals in the delay registers change


## Computationally Efficient Decimators

- Hence, all computations need to be completed in one sampling period, and for the following $(M-1)$ sampling periods the arithmetic units remain idle
- The modified decimator structure also requires $N$ multiplications and $(N-1)$ additions per output sample being computed


## Computationally Efficient Decimators and Interpolators

- However, here the arithmetic units are operative at all instants of the output sampling period which is $M$ times that of the input sampling period
- Similar savings are also obtained in the case of the interpolator structure developed using the polyphase decomposition


## Computationally Efficient Interpolators

- Figures below show the computationally efficient interpolator structures


Interpolator based on Type I polyphase decomposition


Interpolator based on
Type II polyphase decomposition

## Computationally Efficient Decimators and Interpolators

- More efficient interpolator and decimator structures can be realized by exploiting the symmetry of filter coefficients in the case of linear-phase filters $H(z)$
- Consider for example the realization of a factor-of-3 ( $M=3$ ) decimator using a length-12 Type 1 linear-phase FIR lowpass filter


## Computationally Efficient Decimators and Interpolators

- The corresponding transfer function is

$$
H(z)=h[0]+h[1] z^{-1}+h[2] z^{-2}+h[3] z^{-3}+h[4] z^{-4}+h[5] z^{-5}
$$

$$
+h[5] z^{-6}+h[4] z^{-7}+h[3] z^{-8}+h[2] z^{-9}+h[1] z^{-10}+h[0] z^{-11}
$$

- A conventional polyphase decomposition of $H(z)$ yields the following subfilters:
$E_{0}(z)=h[0]+h[3] z^{-1}+h[5] z^{-2}+h[2] z^{-3}$ $E_{1}(z)=h[1]+h[4] z^{-1}+h[4] z^{-2}+h[1] z^{-3}$
$E_{2}(z)=h[2]+h[5] z^{-1}+h[3] z^{-2}+h[0] z^{-3}$


## Computationally Efficient Decimators and Interpolators

- Note that $E_{1}(z)$ still has a symmetric impulse response, whereas $E_{0}(z)$ is the mirror image of $E_{2}(z)$
- These relations can be made use of in developing a computationally efficient realization using only 6 multipliers and 11 two-input adders as shown on the next slide


## Computationally Efficient Decimators and Interpolators

- Factor-of-3 decimator with a linear-phase decimation filter



## A Useful Identity

- The cascade multirate structure shown below appears in a number of applications

- Equivalent time-invariant digital filter obtained by expressing $H(z)$ in its $L$-term Type I polyphase form $\sum_{k=0}^{L-1} z^{-k} E_{k}\left(z^{L}\right)$ is shown below



## Arbitrary-Rate Sampling Rate Converter

- The estimation of a discrete-time signal value at an arbitrary time instant between a consecutive pair of known samples can be solved by using some type of interpolation
- In this approach an approximating continuous-time signal is formed from a set of known consecutive samples of the given discrete-time signal


## Arbitrary-Rate Sampling Rate Converter

- The value of the approximating continuoustime signal is then evaluated at the desired time instant
- This interpolation process can be directly implemented by designing a digital interpolation filter

$$
x[n] \underset{F_{T}=\frac{1}{T}}{\longrightarrow} \stackrel{G_{a}(s)}{\longrightarrow} \stackrel{\hat{x}_{a}(t)}{\longrightarrow} y[n]
$$

## Ideal Sampling Rate Converter

- In principle, a sampling rate conversion by an arbitrary conversion factor can be implemented as follows
- The input digital signal is passed through an ideal analog reconstruction lowpass filter whose output is resampled at the desired output rate as indicated below

$$
\underset{F_{T}=\frac{1}{T}}{\longrightarrow} \underset{G_{a}(s)}{\longrightarrow} \stackrel{\hat{x}_{a}(t) \leftrightarrows}{\longrightarrow} y[n]
$$

## Ideal Sampling Rate Converter

- Let the impulse response of the analog lowpass filter is denoted by $g_{a}(t)$
- Then the output of the filter is given by

$$
\hat{x}_{a}(t)=\sum_{\ell=-\infty}^{\infty} x[\ell] g_{a}(t-\ell T)
$$

- If the analog filter is chosen to bandlimit its output to the frequency range $F_{g}<F_{T}^{\prime} / 2$, its output $\hat{x}_{a}(t)$ can then be resampled at the rate $F_{T}^{\prime}$


## Ideal Sampling Rate Converter

- Since the impulse response $g_{a}(t)$ of an ideal lowpass analog filter is of infinite duration and the samples $g_{a}\left(n T^{\prime}-\ell T\right)$ have to be computed at each sampling instant, implementation of the ideal bandlimited interpolation algorithm in exact form is not practical
- Thus, an approximation is employed in practice


## Ideal Sampling Rate Converter

- Problem statement: Given $N_{2}+N_{1}+1$ input signal samples, $x[k], k=-N_{1}, \ldots, N_{2}$, obtained by sampling an analog signal $x_{a}(t)$ at $t=t_{k}$ $=t_{0}+k T_{\text {in }}$, determine the sample value $x_{a}\left(t_{0}+k T_{\text {in }}\right)=y[\alpha]$ at time instant $t^{\prime}=t_{0}+k T_{\text {in }}$ where $-N_{1} \leq \alpha \leq N_{2}$
- Figure on the next slide illustrates the interpolation process by an arbitrary factor


## Ideal Sampling Rate Converter



- We describe next a commonly employed interpolation algorithm based on a finite weighted sum of input samples


## Lagrange Interpolation Algorithm

- Here, a polynomial approximation $\hat{x}_{a}(t)$ to $x_{a}(t)$ is defined as

$$
\hat{x}_{a}(t)=\sum_{k=-N_{1}}^{N_{2}} P_{k}(t) x[n+k]
$$

where $P_{k}(t)$ are the Lagrange polynomials given by

$$
P_{k}(t)=\prod_{\ell=-N_{1}}^{N_{2}}\left(\frac{t-t_{k}}{t_{k}-t_{\ell}}\right), \quad-N_{1} \leq k \leq N_{2}
$$

## Lagrange Interpolation Algorithm

- Example - Design a fractional-rate interpolator with an interpolation factor of $3 / 2$ using a 3 rd-order polynomial approximation with $N_{1}=2$ and $N_{2}=1$
- The output $y[n]$ of the interpolator is thus computed using

$$
\begin{aligned}
y[n]= & P_{-2}(\alpha) x[n-2]+P_{-1}(\alpha) x[n-1] \\
& +P_{0}(\alpha) x[n]+P_{1}(\alpha) x[n+1]
\end{aligned}
$$

## Lagrange Interpolation Algorithm

- Here, the Lagrange polynomials are given by

$$
\begin{aligned}
P_{-2}(\alpha) & =\frac{(\alpha+1) \alpha(\alpha-1)}{-6}=\frac{1}{6}\left(-\alpha^{3}+\alpha\right) \\
P_{-1}(\alpha) & =\frac{(\alpha+2) \alpha(\alpha-1)}{2}=\frac{1}{2}\left(\alpha^{3}+\alpha^{2}-2 \alpha\right) \\
P_{0}(\alpha) & =\frac{(\alpha+2)(\alpha+1)(\alpha-1)}{-2}=-\frac{1}{2}\left(\alpha^{3}+2 \alpha^{2}-\alpha-2\right) \\
P_{1}(\alpha) & =\frac{(\alpha+2)(\alpha+1) \alpha}{-6}=\frac{1}{6}\left(\alpha^{3}+3 \alpha^{2}+\alpha\right)
\end{aligned}
$$

## Lagrange Interpolation Algorithm

- Figure below shows the locations of the samples of the input and the output for an interpolator with a conversion factor of $3 / 2$
- Locations of the output samples $y[0], y[1]$, and $y[2]$ in the input sample domain are marked with an arrow



## Lagrange Interpolation Algorithm

- From the figure on the previous slide it can be seen that the value of $\alpha$ for computation of $y[n]$, to be labeled $\alpha_{0}$, is 0
- Substituting this value of $\alpha$ in the expressions for the Lagrange polynomial coefficients derived earlier we get

$$
\begin{gathered}
P_{-2}\left(\alpha_{0}\right)=0, \quad P_{-1}\left(\alpha_{0}\right)=0 \\
P_{0}\left(\alpha_{0}\right)=1, \quad P_{1}\left(\alpha_{0}\right)=0
\end{gathered}
$$

## Lagrange Interpolation Algorithm

- The value of $\alpha$ for computation of $y[n+1]$, to be labeled $\alpha_{1}$, is $2 / 3$
- Substituting this value of $\alpha$ in the expressions for the Lagrange polynomial coefficients we get

$$
\begin{aligned}
P_{-2}\left(\alpha_{1}\right) & =0.0617, P_{-1}\left(\alpha_{1}\right) \\
P_{0}\left(\alpha_{1}\right) & =0.7407, \quad P_{1}\left(\alpha_{1}\right)
\end{aligned}=0.4938
$$

## Lagrange Interpolation Algorithm

- The value of $\alpha$ for computation of $y[n+2]$, to be labeled $\alpha_{2}$, is $4 / 3$
- Substituting this value of $\alpha$ in the expressions for the Lagrange polynomial coefficients we get

$$
\begin{aligned}
P_{-2}\left(\alpha_{2}\right) & =-0.1728, \quad P_{-1}\left(\alpha_{2}\right) \\
P_{0}\left(\alpha_{2}\right) & =-1.2963, \quad P_{1}\left(\alpha_{2}\right)
\end{aligned}=1.7284
$$

## Lagrange Interpolation Algorithm

- Substituting the values of the Lagrange polynomial coefficients in the interpolator output equation for $n, n+1$, and $n+2$, and combining the three equations into a matrix form we arrive at

$$
\left[\begin{array}{c}
y[n] \\
y[n+1] \\
y[n+2]
\end{array}\right]=\left[\begin{array}{llll}
P_{-2}\left(\alpha_{0}\right) & P_{-1}\left(\alpha_{0}\right) & P_{0}\left(\alpha_{0}\right) & P_{1}\left(\alpha_{0}\right) \\
P_{-2}\left(\alpha_{1}\right) & P_{-1}\left(\alpha_{1}\right) & P_{0}\left(\alpha_{1}\right) & P_{1}\left(\alpha_{1}\right) \\
P_{-2}\left(\alpha_{2}\right) & P_{-1}\left(\alpha_{2}\right) & P_{0}\left(\alpha_{2}\right) & P_{1}\left(\alpha_{2}\right)
\end{array}\right]\left[\begin{array}{c}
x[n-2] \\
x[n-1] \\
x[n] \\
x[n+1]
\end{array}\right]
$$

## Lagrange Interpolation Algorithm

- The input-output relation of the interpolation filter can be compactly written as

$$
\left[\begin{array}{c}
y[n] \\
y[n+1] \\
y[n+2]
\end{array}\right]=\mathbf{H}\left[\begin{array}{c}
x[n-2] \\
x[n-1] \\
x[n] \\
x[n+1]
\end{array}\right]
$$

where $\mathbf{H}$ is the block coefficient matrix

## Lagrange Interpolation Algorithm

- For the factor-of-3/2 interpolator, we have

$$
\mathbf{H}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0.0617 & -0.2963 & 0.7407 & 0.4938 \\
-0.1728 & 0.7407 & -1.2963 & 1.7284
\end{array}\right]
$$

- It should be evident from an examination of

that the filter coefficients to compute $y[n+3], y[n+4]$, and $y[n+5]$ are again given by the same block matrix $\mathbf{H}$


## Lagrange Interpolation Algorithm

- $\quad$ The desired interpolation filter is a time-varying filter
- A realization of the interpolator is given below



## Lagrange Interpolation Algorithm

- Note: In practice, the overall system delay will be 3 sample periods
- Hence, the output sample $y[n]$ actually will appear at the time index $n+3$
- A realization of the factor-of-3 interpolator in the form of a time-varying filter is shown on the next slide


## Lagrange Interpolation Algorithm



- The coefficients of the 5 -th order timevarying FIR filter have a period of 3 and are assigned the values indicated below

| Time | $h_{0}[n]$ | $h_{1}[n]$ | $h_{2}[n]$ | $h_{3}[n]$ | $h_{4}[n]$ | $h_{5}[n]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \ell$ | $P_{1}\left(\alpha_{0}\right)$ | $P_{0}\left(\alpha_{0}\right)$ | $P_{-1}\left(\alpha_{0}\right)$ | $P_{-2}\left(\alpha_{0}\right)$ | 0 | 0 |
| $3 \ell+1$ | 0 | $P_{1}\left(\alpha_{1}\right)$ | $P_{0}\left(\alpha_{1}\right)$ | $P_{-1}\left(\alpha_{1}\right)$ | $P_{-2}\left(\alpha_{1}\right)$ | 0 |
| $3 \ell+2$ | 0 | 0 | $P_{1}\left(\alpha_{2}\right)$ | $P_{0}\left(\alpha_{2}\right)$ | $P_{-1}\left(\alpha_{2}\right)$ | $P_{-2}\left(\alpha_{2}\right)$ |

## Lagrange Interpolation Algorithm

- Substituting the expressions for the Lagrange polynomials in the output equation we arrive at

$$
\begin{aligned}
y[n]= & \alpha^{3}\left(-\frac{1}{6} x[n-2]+\frac{1}{2} x[n-1]-\frac{1}{2} x[n]+\frac{1}{6} x[n+1]\right) \\
& +\alpha^{2}\left(\frac{1}{2} x[n-1]-x[n]+\frac{1}{2} x[n+1]\right) \\
& +\alpha\left(\frac{1}{6} x[n-2]-x[n-1]+\frac{1}{2} x[n]+\frac{1}{3} x[n+1]\right) \\
& +x[n]
\end{aligned}
$$

## Lagrange Interpolation Algorithm

- A digital filter realization of the equation on the previous slide leads to the Farrow structure shown below

- In the above structure

$$
\begin{aligned}
& H_{0}(z)=-\frac{1}{6} z^{-2}+\frac{1}{2} z^{-1}-\frac{1}{2}+\frac{1}{6} z \\
& H_{1}(z)=\frac{1}{2} z^{-1}-1+\frac{1}{2} z \\
& H_{2}(z)=\frac{1}{6} z^{-2}-z^{-1}+\frac{1}{2}+\frac{1}{3} z
\end{aligned}
$$

## Lagrange Interpolation Algorithm

- In the Farrow structure only the value of a is changed periodically with the remaining digital filter structure kept unchanged
- Figures on the next slide show the input and the output of the above interpolator for a sinusoidal input of frequency of 0.05 Hz sampled at a $1-\mathrm{Hz}$ rate


# Lagrange Interpolation Algorithm <br> Input Sinusoidal Sequence <br> Interpolator Output 




Error Sequence


## Arbitrary-Rate Sampling Rate Converter

## Practical Considerations

- A direct design of a fractional-rate sampling rate converter in most applications is not practical
- This is due to two main reasons:
- length of the time-varying filter needed is usually very large
- real-time computation of the corresponding filter coefficients is nearly impossible

Arbitrary-Rate Sampling Rate Converter

- As a result, the fractional-rate sampling rate converter is almost realized in a hybrid form as indicated below for the case of an interpolator

- The digital sampling rate converter can be implemented in a multistage form to reduce the computational complexity

