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Polyphase Polyphase DecompositionDecomposition
The Decomposition
• Consider an arbitrary sequence {x[n]} with

a z-transform X(z) given by

• We can rewrite X(z) as

where
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PolyphasePolyphase Decomposition Decomposition

• The subsequences             are called the
polyphase components of the parent
sequence {x[n]}

• The functions           , given by the
z-transforms of             , are called the
polyphase components of X(z)
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PolyphasePolyphase Decomposition Decomposition
• The relation between the subsequences

and the original sequence {x[n]} are given
by

• In matrix form we can write
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PolyphasePolyphase Decomposition Decomposition

• A multirate structural interpretation of the
polyphase decomposition is given below
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PolyphasePolyphase Decomposition Decomposition

• The polyphase decomposition of an FIR
transfer function can be carried out by
inspection

• For example, consider a length-9 FIR
transfer function:
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PolyphasePolyphase Decomposition Decomposition
• Its 4-branch polyphase decomposition is

given by

where
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PolyphasePolyphase Decomposition Decomposition
• The polyphase decomposition of an IIR

transfer function H(z) = P(z)/D(z) is not that
straight forward

• One way to arrive at an M-branch polyphase
decomposition of H(z) is to express it in the
form                        by multiplying P(z) and
D(z) with an appropriately chosen
polynomial and then apply an M-branch
polyphase decomposition to
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PolyphasePolyphase Decomposition Decomposition
• Example - Consider

• To obtain a 2-band polyphase decomposition
we rewrite H(z) as

• Therefore,

where
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PolyphasePolyphase Decomposition Decomposition

• Note: The above approach increases the
overall order and complexity of H(z)

• However, when used in certain multirate
structures, the approach may result in a
more computationally efficient structure

• An alternative more attractive approach is
discussed in the following example
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PolyphasePolyphase Decomposition Decomposition
• Example - Consider the transfer function of

a 5-th order Butterworth lowpass filter with
a 3-dB cutoff frequency at 0.5π:

• It is easy to show that H(z) can be expressed
as
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PolyphasePolyphase Decomposition Decomposition

• Therefore H(z) can be expressed as

where
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PolyphasePolyphase Decomposition Decomposition

• Note: In the above polyphase decomposition,
branch transfer functions          are stable
allpass functions

• Moreover, the decomposition has not
increased the order of the overall transfer
function H(z)
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FIR Filter Structures Based onFIR Filter Structures Based on
PolyphasePolyphase Decomposition Decomposition

• We shall demonstrate later that a parallel
realization of an FIR transfer function H(z)
based on the polyphase decomposition can
often result in computationally efficient
multirate structures

• Consider the M-branch Type I polyphase
decomposition of H(z):
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FIR Filter Structures Based onFIR Filter Structures Based on
PolyphasePolyphase Decomposition Decomposition

• A direct realization of H(z) based on the
Type I polyphase decomposition is shown
below
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FIR Filter Structures Based onFIR Filter Structures Based on
PolyphasePolyphase Decomposition Decomposition

• The transpose of the Type I polyphase FIR
filter structure is indicated below
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FIR Filter Structures Based onFIR Filter Structures Based on
PolyphasePolyphase Decomposition Decomposition

• An alternative representation of the
transpose structure shown on the previous
slide is obtained using the notation

• Substituting the above notation in the Type
I polyphase decomposition we arrive at the
Type II polyphase decomposition:
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FIR Filter Structures Based onFIR Filter Structures Based on
PolyphasePolyphase Decomposition Decomposition

• A direct realization of H(z) based on the
Type II polyphase decomposition is shown
below
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Computationally EfficientComputationally Efficient
DecimatorsDecimators

• Consider first the single-stage factor-of-M
decimator structure shown below

• We realize the lowpass filter H(z) using the
Type I polyphase structure as shown on the
next slide

M][nx )(zH ][nyv[n]
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Computationally EfficientComputationally Efficient
DecimatorsDecimators

• Using the cascade equivalence #1 we arrive
at the computationally efficient decimator
structure shown below on the right

Decimator structure based on Type I polyphase decomposition

y[n] y[n]x[n]x[n]
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Computationally EfficientComputationally Efficient
DecimatorsDecimators

• To illustrate the computational efficiency of
the modified decimator structure, assume
H(z) to be a length-N structure and the input
sampling period to be T = 1

• Now the decimator output y[n] in the
original structure is obtained by down-
sampling the filter output v[n] by a factor of
M
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Computationally EfficientComputationally Efficient
DecimatorsDecimators

• It is thus necessary to compute v[n] at

• Computational requirements are therefore N
multiplications and             additions per
output sample being computed

• However, as n increases, stored signals in
the delay registers change
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Computationally EfficientComputationally Efficient
DecimatorsDecimators

• Hence, all computations need to be
completed in one sampling period, and for
the following             sampling periods the
arithmetic units remain idle

• The modified decimator structure also
requires N multiplications and
additions per output sample being computed
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Computationally EfficientComputationally Efficient
Decimators and InterpolatorsDecimators and Interpolators

• However, here the arithmetic units are
operative at all instants of the output
sampling period which is M times that of
the input sampling period

• Similar savings are also obtained in the case
of the interpolator structure developed using
the polyphase decomposition
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Computationally EfficientComputationally Efficient
InterpolatorsInterpolators

• Figures below show the computationally
efficient interpolator structures

        Interpolator based on 
Type I polyphase decomposition

         Interpolator based on 
Type II polyphase decomposition
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Computationally EfficientComputationally Efficient
Decimators and InterpolatorsDecimators and Interpolators

• More efficient interpolator and decimator
structures can be realized by exploiting the
symmetry of filter coefficients in the case of
linear-phase filters H(z)

• Consider for example the realization of a
factor-of-3 (M = 3) decimator using a
length-12 Type 1 linear-phase FIR lowpass
filter
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Computationally EfficientComputationally Efficient
Decimators and InterpolatorsDecimators and Interpolators

• The corresponding transfer function is

• A conventional polyphase decomposition of
H(z) yields the following subfilters:
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Computationally EfficientComputationally Efficient
Decimators and InterpolatorsDecimators and Interpolators

• Note that           still has a symmetric
impulse response, whereas            is the
mirror image of

• These relations can be made use of in
developing a computationally efficient
realization using only 6 multipliers and 11
two-input adders as shown on the next slide
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Computationally EfficientComputationally Efficient
Decimators and InterpolatorsDecimators and Interpolators

• Factor-of-3 decimator with a linear-phase
decimation filter
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A Useful IdentityA Useful Identity
• The cascade multirate structure shown

below appears in a number of applications

• Equivalent time-invariant digital filter
obtained by expressing H(z) in its L-term
Type I polyphase form
is shown below

L LH(z)x[n] y[n]
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Arbitrary-Rate Sampling RateArbitrary-Rate Sampling Rate
ConverterConverter

• The estimation of a discrete-time signal
value at an arbitrary time instant between a
consecutive pair of known samples can be
solved by using some type of interpolation

• In this approach an approximating
continuous-time signal is formed from a set
of known consecutive samples of the given
discrete-time signal
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Arbitrary-Rate Sampling RateArbitrary-Rate Sampling Rate
ConverterConverter

• The value of the approximating continuous-
time signal is then evaluated at the desired
time instant

• This interpolation process can be directly
implemented by designing a digital
interpolation filter
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Ideal Sampling RateIdeal Sampling Rate
ConverterConverter

• In principle, a sampling rate conversion by
an arbitrary conversion factor can be
implemented  as follows

• The input digital signal is passed through an
ideal analog reconstruction lowpass filter
whose output is resampled at the desired
output rate as indicated below
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Ideal Sampling RateIdeal Sampling Rate
ConverterConverter

• Let the impulse response of the analog
lowpass filter is denoted by

• Then the output of the filter is given by

• If the analog filter is chosen to bandlimit its
output to the frequency range                   ,
its output          can then be resampled at the
rate

)(tga

2/'
Tg FF <

∑∞
−∞= −= l ll )(][)( Ttgxtx aa

^

)(txa
^

'
TF



Copyright © 2001, S. K. Mitra
34

Ideal Sampling RateIdeal Sampling Rate
ConverterConverter

• Since the impulse response          of an ideal
lowpass analog filter is of infinite duration
and the samples                     have to be
computed at each sampling instant,
implementation of the ideal bandlimited
interpolation algorithm in exact form is not
practical

• Thus, an approximation is employed in
practice
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Ideal Sampling RateIdeal Sampling Rate
ConverterConverter

• Problem statement: Given                    input
signal samples, x[k], k =                    , obtained
by sampling an analog signal         at 

            , determine the sample value
                           at time instant

where
• Figure on the next slide illustrates the

interpolation process by an arbitrary factor
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Ideal Sampling RateIdeal Sampling Rate
ConverterConverter

• We describe next a commonly employed
interpolation algorithm based on a finite
weighted sum of input samples
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Here, a polynomial approximation          to
    is defined as

where          are the Lagrange polynomials
given by
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Example - Design a fractional-rate
interpolator with an interpolation factor of
3/2 using a 3rd-order polynomial
approximation with            and

• The output y[n] of the interpolator is thus
computed using

21 =N 12 =N
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Here, the Lagrange polynomials are given
by
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Figure below shows the locations of the
samples of the input and the output for an
interpolator with a conversion factor of 3/2

• Locations of the output samples y[0], y[1],
and y[2] in the input sample domain are
marked with an arrow

Input sample index
Output sample index

↓ ↓ ↓
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• From the figure on the previous slide it can
be seen that the value of α for computation
of y[n], to be labeled      , is 0

• Substituting this value of α in the
expressions for the Lagrange polynomial
coefficients derived earlier we get

,
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• The value of α for computation of y[n+1],
to be labeled      , is 2/3

• Substituting this value of α in the
expressions for the Lagrange polynomial
coefficients we get                   

,
,

1α

0617.0)( 12 =α−P 2963.0)( 11 −=α−P
7407.0)( 10 =αP 4938.0)( 11 =αP
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• The value of α for computation of y[n+2],
to be labeled      , is 4/3

• Substituting this value of α in the
expressions for the Lagrange polynomial
coefficients we get                   

,
,

2α

1728.0)( 22 −=α−P 7407.0)( 21 =α−P
2963.1)( 20 −=αP 7284.1)( 21 =αP



Copyright © 2001, S. K. Mitra
44

LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Substituting the values of the Lagrange
polynomial coefficients in the interpolator
output equation for n, n+1, and n+2, and
combining the three equations into a matrix
form we arrive at
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• The input-output relation of the
interpolation filter can be compactly written
as

where H is the block coefficient matrix
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• For the factor-of-3/2 interpolator, we have

• It should be evident from an examination of

that the filter coefficients to compute
y[n+3], y[n+4], and y[n+5] are again given
by the same block matrix H

H












−−
−=

7284.12963.17407.01728.0
4938.07407.02963.00617.0
0100

Output sample index
Input sample index

↓ ↓ ↓
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

•         The desired interpolation filter is a
time-varying filter

• A realization of the interpolator is given
below
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Note: In practice, the overall system delay
will be 3 sample periods

• Hence, the output sample y[n] actually will
appear at the time index n+3

• A realization of the factor-of-3 interpolator
in the form of a time-varying filter is shown
on the next slide
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• The coefficients of the 5-th order time-
varying FIR filter have a period of 3 and are
assigned the values indicated below
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• Substituting the expressions for the Lagrange
polynomials in the output equation we arrive
at
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• A digital filter realization of the equation on
the previous slide leads to the Farrow
structure shown below

• In the above structure
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm

• In the Farrow structure only the value of a is
changed periodically with the remaining
digital filter structure kept unchanged

• Figures on the next slide show the input and
the output of the above interpolator for a
sinusoidal input of frequency of 0.05 Hz
sampled at a 1-Hz rate
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LagrangeLagrange Interpolation Interpolation
AlgorithmAlgorithm
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Arbitrary-Rate Sampling RateArbitrary-Rate Sampling Rate
ConverterConverter

Practical Considerations
• A direct design of a fractional-rate sampling

rate converter in most applications is not
practical

• This is due to two main reasons:
– length of the time-varying filter needed is

usually very large
– real-time computation of the corresponding

filter coefficients is nearly impossible
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Arbitrary-Rate Sampling RateArbitrary-Rate Sampling Rate
ConverterConverter

• As a result, the fractional-rate sampling rate
converter is almost realized in a hybrid form
as indicated below for the case of an
interpolator

•  The digital sampling rate converter can be
implemented in a multistage form to reduce
the computational complexity
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