Digital Filter Banks

o Thedigita filter bank is set of bandpass
filters with either acommon input or a
summed output

* An M-band analysis filter bank is shown
below

xn] z) [* vplnl

I‘ HI(Z} —* FI[H]

Hy @ vy 4lnl
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Digital Filter Banks

» The subfilters H, (z) in the analysisfilter
bank are known as analysisfilters

e The analysisfilter bank isused to
decompose the input signal x[n] into a set of
subband signals vi[n] with each subband
signal occupying a portion of the original
frequency band
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Digital Filter Banks

* An L-band synthesisfilter bank is shown

bel ow ol = Fy2) Wl
fInl ¥ F i

v, ] - FL_lfz)J

e It performs the dual operation to that of the
analysis filter bank
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Digital Filter Banks

» The subfilters F (2) In the synthesisfilter
bank are known as synthesis filters

e The synthesisfilter bank is used to combine
a set of subband signalsV [n] (typically
belonging to contiguous frequency bands)
Into one signal y[n] at its output
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Uniform Digital Filter Banks

* A simpletechnigque to design a class of
filter banks with equal passband widthsis
outlined next

o Let Hy(2) represent a causal lowpass digital
filter with areal impulse responsehg n]:

Ho(2) =25 hon]z™"
* Thefilter Hy(z) Isassumed to be an IR
filter without any loss of generality
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Uniform Digital Filter Banks

» Assumethat Hg(2) has its passband edge op
and stopband edge ®garound /M, where M
IS some arbitrary integer, as indicated below
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Uniform Digital Filter Banks

* Now, consider the transfer function H (2)

whose impulse response hy[n]is given by

hy[n] = hon]el kM = hynJwgk,
0<k<M -1

where we have used the notation\W,, = e~ 12%/M
e Thus,
Hi(2) = iz =37 hnl(zw |,

O0<k<M -1
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Uniform Digital Filter Banks

° |.&,
H, (2) = Ho(2W), 0<k<M -1

e The corresponding freguency response s
given by
H, (el®) = Hg(ell=27kM)y "0<k<M -1
* Thus, the frequency response of Hy (z) Is

obtained by shifting the response of Hg(2)
to the right by an amount 2zk/M
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Uniform Digital Filter Banks

e Theresponsesof H(2) , H (2), ..., Hk(2)
are shown below
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Uniform Digital Filter Banks

» Note: The impulse responses h,[n] are, In
general complex, and hence|H, (e!®)|does
not necessarily exhibit symmetry with
respecttom =0

* Theresponses shown in the figure of the
previous slide can be seen to be uniformly
shifted version of the response of the basic
prototype filter Hy(2)

10 _ _
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Uniform Digital Filter Banks

The M filters defined by
H, (2) = Ho(2W), 0<k<M -1

could be used ast
analysis filter ban
In the synthesis fi

ne analysisfiltersin the
K or asthe synthesisfilters

ter bank

Since the magnitude responses of all M
filters are uniformly shifted version of that
of the prototype filter, the filter bank

obtained is called

auniform filter bank
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Uniform DFT Filter Banks

Polyphase | mplementation

 Let the prototype lowpass transfer function
be represented In its M-band polyphase

form:
Ho(d) =X, 2 'E/(2")
where E,(2) isthe /¢-th polyphase
component of Hg(2):
E/(2)=> " q&nz"=>"  h¢+nM]z",
0</<M -1

12 _ _
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Uniform DFT Filter Banks

« Substituting zwith 2\ in the expression
for Hy(z)we arrive at the M-band polyphase
decomposition of H(2):

M—1_—fp=K Myp /K
He(2) =200 2 Wy “E/ (2" W)
:Zyzalz_gwl\ﬁkgEf(ZM), 0<k<M -1

 Inderiving the last expression we have used
the identity Wi =1

13 _ _
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Uniform DFT Filter Banks

* The egquation on the previous slide can be
written in matrix form as

Eo(2Y)
-1 M
K2k ~(M -1k z E(z")
H(@)=10 W' W™ e WMoy
_Z_(M DEy _1(2M ) |
0<k<M -1
14
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Uniform DFT Filter Banks

 All M eguations on the previous slide can
be combined into one matrix equatlon as

. 11 1 ... 1 Eo(Z)
H‘l’(z) 1 W,\]i W,\;j W,\;Z('\:A‘li 2 E, (")
Ho(2) [=]1 W2 Wy* oo W ZMD Z_ZEZ(ZM)

| H 3 (2) : —:(M—l) —2:(|v|—1). :—(M—1)2 '
T | PSSy
Y—l
M D
e IntheaboveD istheM xM DFT matrix

15 _ _
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Uniform DFT Filter Banks

 An efficient implementation of the M-band
uniform analysis filter bank, more
commonly known as the uniform DFT
analysis filter bank, isthen as shown below

M
il —P——— Egc™)

1

<

— E|(zM) o
z! =
| E,cM) g
-1 =
Z . <
I_.'EM_II:EM)| >

- vﬂ[u]

¥ 1[M]

— vz[u]

— vy, (1]
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Uniform DFT Filter Banks

* The computational complexity of an M-band
uniform DFT filter bank is much smaller than
that of adirect Implementation as shown

below

x[n]

17

(2)

—* v, [n]

‘_’| H(z)

"'| Hy @)

— vl[n]

— vM_l[n]
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Uniform DFT Filter Banks

* For example, an M-band uniform DF1
analysis filter bank based on an N-tap
prototype lowpass filter requires atotal of
'\glogz M + N multipliers

e On the other hand, a direct implementation
requires NM multipliers

18 _ _
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Uniform DFT Filter Banks

* Following asimilar development, we can
derive the structure for auniform DFT
synthesis filter bank as shown below

M
vﬂ[n] —»
{:1[11] -+

v,[n] =
i

A
v, _n] =

L-point DFT

s Egzh)

—g—

E_l

» Ezh

" E,(zh)

> EL— 1(2 L)

Type | uniform DFT

19

synthesis filter bank

A
vﬂ[n] —>
P 1[M] -+

1?,3[11] —
i

M
v, 1[.1'1] -

L-point DFT

» Ro(zh)

» Ryzh)

» R,(zh)

> RL—l(z L)

—-é—* v[n]

Typell uniform DFT
synthesis filter bank
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Uniform DFT Filter Banks

* Now E (z'vI ) can be expressed in terms of

Eo(2") " Ho(2)

2 Ey(2") .| Hi®@

7 2E, (M) M D H_2(Z)
_Z—(M ) éM _1(zM ) Hyma(2)_

e The above equation can be used to
determine the polyphase components of an

lIR transfer function Hy(2)

20 _ _
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Nyquist Filtrs

e Under certain conditions, alowpass filter
can be designed to have a number of zero-
valued coefficients

e \When used

as Interpolation filters these

filters preserve the nonzero samples of the
up-sampler output at the interpolator output

* Moreover, due to the presence of these
zero-valued coefficients, these filters are
computationally more efficient than other
lowpass filters of same order
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Lth-Band Filters

o Thesefilters, called the Nyquist filters or
Lth-band filters, are often used in single-rate
and multi-rate signal processing

e Consider the factor-of-L interpolator shown

bel ow
x[n] ~{t L

ulNleme s ying

e The Input-output relation of the interpolator
In the z-domain is given by
Y(2)=H(2X(z")

22 _ _
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Lth-Band Filters

o |If H(Z) Isrealized in the L-band polyphase
form, then we have

H(9)=X 0z 'Ei(Z)
o Assume that the k-th polyphase component
of H(2) isaconstant, i.e.,E,(2) = a:

H(2) = Eo(z) + 2B (24 +..+ z(DE,_,(2Y)
+ 77K DE (D) +..+ 7 EDE (1)

23 _ _
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Lth-Band Filters

e Then we can express Y(2) as

Y(2)=az KX(ZL) + Lz_lz—ﬁ E,(z5) X ()
/=0

e Asaresult, K
VIiLn+Kk] = a X n]

e Thus, the input samples appear at the output
without any distortion for all values of n,
whereas, in-between (L —1) output samples
are determined by interpolation
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Lth-Band Filters

A filter with the above property iscalled a
Nyquist filter or an Lth-band filter

* |Itsimpulse response has many zero-valued
samples, making it computationally
attractive

* For example, the impulse response of an
Lth-band filter for k = O satisfies the
following condition

o, nN=0
hiLn] = {O, otherwise
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Lth-Band Filters

* Figure below shows atypical impulse
response of athird-band filter (L = 3)

hn]
Q

e |Lth-band filters can be aeither FIR or |IR

filters

26 _ _
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Lth-Band Filters

o |If the O-th polyphase component of H(zZ) iIsa
constant, i.e., Eq(z) = a then it can be shown
that

H (z\N )=La =1 (assuming a. = 1/L)

. Slncethefrequency response of H (sz) IS
the shifted version H (el (@=27k/L)Y of H (e)®)
the sum of all of these L uniformly shifted
versions of H (e!®?) add up to a constant

Hiz) HizWpy HzW ™) Hizw b h
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Half-Band Filters

e An Lth-band filter for L = 2 1scalled a half-
band filter

 Thetransfer function of a half-band filter Is
thus given by

H(2) = o+ 25 (Z%)
with its Impul se response satisfying

| a, n=0
hi2n} = { 0, otherwise

28 _ _
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Half-Band Filters

e The condition

H(2) = a+ z71E(Z%)

reducesto
H(z)+H(-2)=1 (assuming a. = 0.5)

 If H(2) hasreal coefficients, then

H (—el®) = H (el (*=®))
e Hence

H(el®)+H(elm®) =1

Copyright © 2001, S. K. Mitra
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Half-Band Filters

o« mmp H (el(n/2-0)) and H (e!(®2+9)) add up
tolforall©

e Or, in other words, H (e!®) exhibits a
symmetry with respect to the half-band

frequency n/2, hence the name “ half-band
filter”
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Half-Band Filters

* Figure below illustrates this symmetry for a
half-band lowpass filter for which passband
and stopband ripples are equdl, 1.e., 8, =64
and passband and stopband edges are
symmetric with respect to n/2, 1.e., o+ =T

H(e/?)

148 o= - ~aC
]._8 I

\ﬂ Copyright © 2001, S. K. Mitra
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Half-Band Filters

Attractive property: About 50% of the
coefficients of h[n] are zero

This reduces the number of multiplications
required in its implementation significantly
For example, iIf N= 101, an arbitrary Type 1
FIR transfer function requires about 50

multipliers, whereas, a Type 1 half-band
filter requires only about 25 multipliers
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Half-Band Filters

An FIR half-band filter can be designed
with linear phase

However, there is a constraint on its length

Consider a zero-phase half-band FIR filter
for whichh[n] =a* h[-n], with |a|=1

Let the highest nonzero coefficient be h[R]
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Half-Band Filters

e Then Risodd as aresult of the condition

| a, nN=0
hi2n}= { 0, otherwise

 Therefore R = 2K+1 for some integer K

e Thusthe length of h[n] isrestricted to be of
the form 2R+1 = 4K+3 [unless H(2) isa
constant]

34 _ _
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Design of Linear-Phase
Lth-Band Filters

* A lowpass linear-phase Lth-band FIR filter
can be readily designed viathe windowed
Fourier series approach

e In this approach, the impulse response
coefficients of the lowpass filter are chosen
as h[n] = h p[n]-w{n] where h p[n] isthe
Impulse response of an ideal lowpass filter
with a cutoff at «/L and w|n] isasuitable

= window function
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Design of Linear-Phase
Lth-Band Filters

* Now, the impulse response of an ideal Lth-
band lowpass filter with a cutoff at o, ==/L
IS given by

sin(wn/ L)

th[n]: . —o0<N<L
TN

|t can be seen from the above that
h pln]=0 forn=+L,+2L,...

36 _ _
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Design of Linear-Phase
Lth-Band Filters

e Hence, the coefficient condition of the Lth-
band filter

o, nN=0
hiLn] = {O, otherwise
IS Indeed satisfied

 Hence, an Lth-band FIR filter can be
designed by applying a suitable window
wn] to h p[n]

37 _ _
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Design of Linear-Phase
Lth-Band Filters

here are many other candidates for Lth-
band FIR filters

Program 10 8 can be used to design an Lth-
band FIR filter using the windowed Fourier
series approach

The program employs the Hamming
window

However, other windows can also be used
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Design of Linear-Phase
Lth-Band Filters

* Figure below shows the gain response of a
nalf-band filter of length-23 designed using
rogram 10 8

0

-20

-40

Gain, dB

-60

-80

0 02 04 06 08 1
o/t

39 _ _
Copyright © 2001, S. K. Mitra



Design of Linear-Phase
Lth-Band Filters

o Thefilter coefficients are given by
h[-11]=h[11]=- 0.002315; h[—10]=h[10]=0;
h[-9]=h[9]=0.005412; h[-8]=h[8]=0;
h[-7]=h[7]=- 0.001586; h[—6]=h[6]=0;
h[-5]=h[5]=0.003584; h[-4]=h[4]=0;
h[-3]=h[3]=—-0.089258; h[-2]=h[2]=0;
h[-1]=h[1]=0.3122379; h[0]=0.5;

o Asexpected, h[n] =0 for
nN=+2,£4,+6,£8,+10

40 _ _
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