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Digital Filter BanksDigital Filter Banks
• The digital filter bank is set of bandpass

filters with either a common input or a
summed output

• An M-band analysis filter bank is shown
below
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Digital Filter BanksDigital Filter Banks

• The subfilters            in the analysis filter
bank are known as analysis filters

• The analysis filter bank is used to
decompose the input signal x[n] into a set of
subband signals           with each subband
signal occupying a portion of the original
frequency band
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Digital Filter BanksDigital Filter Banks

• An L-band synthesis filter bank is shown
below

• It performs the dual operation to that of the
analysis filter bank
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Digital Filter BanksDigital Filter Banks

• The subfilters            in the synthesis filter
bank are known as synthesis filters

• The synthesis filter bank is used to combine
a set of subband signals           (typically
belonging to contiguous frequency bands)
into one signal y[n] at its output
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Uniform Digital Filter BanksUniform Digital Filter Banks

• A simple technique to design a class of
filter banks with equal passband widths is
outlined next

• Let            represent a causal lowpass digital
filter with a real impulse response         :

• The filter            is assumed to be an IIR
filter without any loss of generality
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Uniform Digital Filter BanksUniform Digital Filter Banks

• Assume that            has its passband edge
and stopband edge      around π/M, where M
is some arbitrary integer, as indicated below
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Uniform Digital Filter BanksUniform Digital Filter Banks

• Now, consider the transfer function
whose impulse response          is given by

where we have used the notation
• Thus,
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Uniform Digital Filter BanksUniform Digital Filter Banks

• i.e.,

• The corresponding frequency response is
given by

• Thus, the frequency response of            is
obtained by shifting the response of
to the right by an amount 2πk/M
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Uniform Digital Filter BanksUniform Digital Filter Banks
• The responses of            ,            , . . . ,

are shown below
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Uniform Digital Filter BanksUniform Digital Filter Banks

• Note: The impulse responses          are, in
general complex, and hence                 does
not necessarily exhibit symmetry with
respect to ω = 0

• The responses shown in the figure of the
previous slide can be seen to be uniformly
shifted version of the response of the basic
prototype filter
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Uniform Digital Filter BanksUniform Digital Filter Banks
• The M filters defined by

could be used as the analysis filters in the
analysis filter bank or as the synthesis filters
in the synthesis filter bank

• Since the magnitude responses of all M
filters are uniformly shifted version of that
of the prototype filter, the filter bank
obtained is called a uniform filter bank
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Uniform DFT Filter BanksUniform DFT Filter Banks
Polyphase Implementation
• Let the prototype lowpass transfer function

be represented in its M-band polyphase
form:

where           is the   -th polyphase
component of          :
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Uniform DFT Filter BanksUniform DFT Filter Banks

• Substituting z with          in the expression
for           we arrive at the M-band polyphase
decomposition of           :

• In deriving the last expression we have used
the identity
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Uniform DFT Filter BanksUniform DFT Filter Banks

• The equation on the previous slide can be
written in matrix form as
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Uniform DFT Filter BanksUniform DFT Filter Banks
• All M equations on the previous slide can

be combined into one matrix equation as

• In the above D is the             DFT matrix
M D 1−
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Uniform DFT Filter BanksUniform DFT Filter Banks
• An efficient implementation of the M-band

uniform analysis filter bank, more
commonly known as the uniform DFT
analysis filter bank, is then as shown below
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Uniform DFT Filter BanksUniform DFT Filter Banks

• The computational complexity of an M-band
uniform DFT filter bank is much smaller than
that of a direct implementation as shown
below
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Uniform DFT Filter BanksUniform DFT Filter Banks

• For example, an M-band uniform DFT
analysis filter bank based on an N-tap
prototype lowpass filter requires a total of

                  multipliers
• On the other hand, a direct implementation

requires NM multipliers

NMM +22
log
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Uniform DFT Filter BanksUniform DFT Filter Banks
• Following a similar development, we can

derive the structure for a uniform DFT
synthesis filter bank as shown below

Type I uniform DFT Type II uniform DFT
synthesis filter bank synthesis filter bank
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Uniform DFT Filter BanksUniform DFT Filter Banks

• Now              can be expressed in terms of

• The above equation can be used to
determine the polyphase components of an
IIR transfer function
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Nyquist FiltrsNyquist Filtrs
• Under certain conditions, a lowpass filter

can be designed to have a number of zero-
valued coefficients

• When used as interpolation filters these
filters preserve the nonzero samples of the
up-sampler output at the interpolator output

• Moreover, due to the presence of these
zero-valued coefficients, these filters are
computationally more efficient than other
lowpass filters of same order
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LLthth-Band Filters-Band Filters
• These filters, called the Nyquist filters or

Lth-band filters, are often used in single-rate
and multi-rate signal processing

• Consider the factor-of-L interpolator shown
below

• The input-output relation of the interpolator
in the z-domain is given by

L][nx ][ny)(zH
][nxu

)()()( LzXzHzY =



Copyright © 2001, S. K. Mitra
23

LLthth-Band Filters-Band Filters

• If H(z) is realized in the L-band polyphase
form, then we have

• Assume that the k-th polyphase component
of H(z) is a constant, i.e.,                :
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LLthth-Band Filters-Band Filters
• Then we can express Y(z) as

• As a result,

• Thus, the input samples appear at the output
without any distortion for all values of n,
whereas, in-between            output samples
are determined by interpolation
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LLthth-Band Filters-Band Filters
• A filter with the above property is called a

Nyquist filter or an Lth-band filter
• Its impulse response has many zero-valued

samples, making it computationally
attractive

• For example, the impulse response of an
Lth-band filter for k = 0 satisfies the
following condition
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LLthth-Band Filters-Band Filters
• Figure below shows a typical impulse

response of a third-band filter (L = 3)

• Lth-band filters can be either FIR or IIR
filters
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LLthth-Band Filters-Band Filters
• If the 0-th polyphase component of H(z) is a

constant, i.e.,                 then it can be shown
that                                                              

       (assuming α = 1/L)
• Since the frequency response of                is

the shifted version                          of             ,
the sum of all of these L uniformly shifted
versions of              add up to a constant
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Half-Band FiltersHalf-Band Filters

• An Lth-band filter for L = 2 is called a half-
band filter

• The transfer function of a half-band filter is
thus given by

with its impulse response satisfying
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Half-Band FiltersHalf-Band Filters

• The condition

reduces to
      (assuming α = 0.5)

• If H(z) has real coefficients, then

• Hence
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Half-Band FiltersHalf-Band Filters

•                                and                       add up
to 1 for all θ

• Or, in other words,             exhibits a
symmetry with respect to the half-band
frequency π/2, hence the name “half-band
filter”
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Half-Band FiltersHalf-Band Filters
• Figure below illustrates this symmetry for a

half-band lowpass filter for which passband
and stopband ripples are equal, i.e.,
and passband and stopband edges are
symmetric with respect to π/2, i.e.,

sp δ=δ

π=ω+ω sp
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Half-Band FiltersHalf-Band Filters

• Attractive property: About 50% of the
coefficients of h[n] are zero

• This reduces the number of multiplications
required in its implementation significantly

• For example, if N = 101, an arbitrary Type 1
FIR transfer function requires about 50
multipliers, whereas, a Type 1 half-band
filter requires only about 25 multipliers
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Half-Band FiltersHalf-Band Filters

• An FIR half-band filter can be designed
with linear phase

• However, there is a constraint on its length
• Consider a zero-phase half-band FIR filter

for which                          , with
• Let the highest nonzero coefficient be h[R]

][*][ nhnh −α= 1|| =α
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Half-Band FiltersHalf-Band Filters

• Then R is odd as a result of the condition

• Therefore R = 2K+1 for some integer K
• Thus the length of h[n] is restricted to be of

the form 2R+1 = 4K+3 [unless H(z) is a
constant]
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Design of Linear-PhaseDesign of Linear-Phase
LLthth-Band Filters-Band Filters

• A lowpass linear-phase Lth-band FIR filter
can be readily designed via the windowed
Fourier series approach

• In this approach, the impulse response
coefficients of the lowpass filter are chosen
as                                 where             is the
impulse response of an ideal lowpass filter
with a cutoff at π/L and w[n] is a suitable
window function
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Copyright © 2001, S. K. Mitra
36

Design of Linear-PhaseDesign of Linear-Phase
LLthth-Band Filters-Band Filters

• Now, the impulse response of an ideal Lth-
band lowpass filter with a cutoff at
is given by

• It can be seen from the above that
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Design of Linear-PhaseDesign of Linear-Phase
LLthth-Band Filters-Band Filters

• Hence, the coefficient condition of the Lth-
band filter

is indeed satisfied
• Hence, an Lth-band FIR filter can be

designed by applying a suitable window
w[n] to
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Design of Linear-PhaseDesign of Linear-Phase
LLthth-Band Filters-Band Filters

• There are many other candidates for Lth-
band FIR filters

• Program 10_8 can be used to design an Lth-
band FIR filter using the windowed Fourier
series approach

• The program employs the Hamming
window

• However, other windows can also be used
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Design of Linear-PhaseDesign of Linear-Phase
LLthth-Band Filters-Band Filters

• Figure below shows the gain response of a
half-band filter of length-23 designed using
Program 10_8
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Design of Linear-PhaseDesign of Linear-Phase
LLthth-Band Filters-Band Filters

• The filter coefficients are given by

• As expected, h[n] = 0 for

;0]10[]10[;002315.0]11[]11[ ==−−==− hhhh
;0]8[]8[;005412.0]9[]9[ ==−==− hhhh
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;0]4[]4[;003584.0]5[]5[ ==−==− hhhh

;0]2[]2[;089258.0]3[]3[ ==−−==− hhhh
;5.0]0[;3122379.0]1[]1[ ===− hhh

10,8,6,4,2 ±±±±±=n
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