Perfect Reconstruction TwoChannel FIR Filter Banks

- A perfect reconstruction two-channel FIR filter bank with linear-phase FIR filters can be designed if the power-complementary requirement

$$
\left|H_{0}\left(e^{j \omega}\right)\right|^{2}+\left|H_{1}\left(e^{j \omega}\right)\right|^{2}=1
$$

between the two analysis filters $H_{0}(z)$ and $H_{1}(z)$ is not imposed

Perfect Reconstruction TwoChannel FIR Filter Banks

- To develop the pertinent design equations we observe that the input-output relation of the 2-channel QMF bank

$$
\begin{aligned}
Y(z) & =\frac{1}{2}\left\{H_{0}(z) G_{0}(z)+H_{1}(z) G_{1}(z)\right\} X(z) \\
& +\frac{1}{2}\left\{H_{0}(-z) G_{0}(z)+H_{1}(-z) G_{1}(z)\right\} X(-z)
\end{aligned}
$$

can be expressed in matrix form as

$$
Y(z)=\frac{1}{2}\left[\begin{array}{ll}
G_{0}(z) & G_{1}(z)
\end{array}\right]\left[\begin{array}{cc}
H_{0}(z) & H_{0}(-z) \\
H_{1}(z) & H_{1}(-z)
\end{array}\right]\left[\begin{array}{c}
X(z) \\
X(-z)
\end{array}\right]
$$

Perfect Reconstruction TwoChannel FIR Filter Banks

- From the previous equation we obtain

$$
Y(-z)=\frac{1}{2}\left[\begin{array}{ll}
G_{0}(-z) & G_{1}(-z)
\end{array}\right]\left[\begin{array}{cc}
H_{0}(z) & H_{0}(-z) \\
H_{1}(z) & H_{1}(-z)
\end{array}\right]\left[\begin{array}{c}
X(z) \\
X(-z)
\end{array}\right]
$$

- Combining the two matrix equations we get

$$
\begin{aligned}
{\left[\begin{array}{c}
Y(z) \\
Y(-z)
\end{array}\right] } & =\frac{1}{2}\left[\begin{array}{cc}
G_{0}(z) & G_{1}(z) \\
G_{0}(-z) & G_{1}(-z)
\end{array}\right]\left[\begin{array}{cc}
H_{0}(z) & H_{0}(-z) \\
H_{1}(z) & H_{1}(-z)
\end{array}\right]\left[\begin{array}{c}
X(z) \\
X(-z)
\end{array}\right] \\
& =\frac{1}{2} \mathbf{G}^{(m)}(z)\left[\mathbf{H}^{(m)}(z)\right]^{T}\left[\begin{array}{c}
X(z) \\
X(-z)
\end{array}\right]
\end{aligned}
$$

Perfect Reconstruction TwoChannel FIR Filter Banks

where

$$
\begin{aligned}
\mathbf{G}^{(m)}(z) & =\left[\begin{array}{cc}
G_{0}(z) & G_{1}(z) \\
G_{0}(-z) & G_{1}(-z)
\end{array}\right] \\
\mathbf{H}^{(m)}(z) & =\left[\begin{array}{cc}
H_{0}(z) & H_{1}(z) \\
H_{0}(-z) & H_{1}(-z)
\end{array}\right]
\end{aligned}
$$

are called the modulation matrices

Perfect Reconstruction Two-

 Channel FIR Filter Banks- Now for perfect reconstruction we must have $Y(z)=z^{-\ell} X(z)$ and correspondingly $Y(-z)=(-z)^{-\ell} X(-z)$
- Substituting these relations in the equation

$$
\left[\begin{array}{c}
Y(z) \\
Y(-z)
\end{array}\right]=\frac{1}{2} \mathbf{G}^{(m)}(z)\left[\mathbf{H}^{(m)}(z)\right]^{T}\left[\begin{array}{c}
X(z) \\
X(-z)
\end{array}\right]
$$

we observe that the PR condition is satisfied if

$$
\frac{1}{2} \mathbf{G}^{(m)}(z)\left[\mathbf{H}^{(m)}(z)\right]^{T}=\left[\begin{array}{cc}
z^{-\ell} & 0 \\
0 & (-z)_{\text {Copyrigh }}^{-\ell}
\end{array}\right]
$$

Perfect Reconstruction TwoChannel FIR Filter Banks

- Thus, knowing the analysis filters $H_{0}(z)$ and $H_{1}(z)$, the synthesis filters $G_{0}(z)$ and $G_{1}(z)$ are determined from

$$
\mathbf{G}^{(m)}(z)=2\left[\begin{array}{cc}
z^{-\ell} & 0 \\
0 & (-z)^{-\ell}
\end{array}\right]\left(\left[\mathbf{H}^{(m)}(z)\right]^{T}\right)^{-1}
$$

- After some algebra we arrive at

Perfect Reconstruction Two-

 Channel FIR Filter Banks$$
\begin{aligned}
& G_{0}(z)=\frac{2 z^{-\ell}}{\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]} \cdot H_{1}(-z) \\
& G_{1}(z)=-\frac{2 z^{-\ell}}{\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]} \cdot H_{0}(-z)
\end{aligned}
$$

where
$\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]=H_{0}(z) H_{1}(-z)-H_{0}(-z) H_{1}(z)$
and ℓ is an odd positive integer

Perfect Reconstruction TwoChannel FIR Filter Banks

- For FIR analysis filters $H_{0}(z)$ and $H_{1}(z)$, the synthesis filters $G_{0}(z)$ and $G_{1}(z)$ will also be FIR filters if

$$
\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]=c z^{-k}
$$

where c is a real number and k is a positive integer

- In this case $G_{0}(z)=\frac{2}{c} z^{-(\ell-k)} H_{1}(-z)$

$$
G_{1}(z)=-\frac{2}{c} z^{-(\ell-k)} H_{0}(-z)
$$

Orthogonal Filter Banks

- Let $H_{0}(z)$ be an FIR filter of odd order N satisfying the power-symmetric condition

$$
H_{0}(z) H_{0}\left(z^{-1}\right)+H_{0}(-z) H_{0}\left(-z^{-1}\right)=1
$$

- Choose $H_{1}(z)=z^{-N} H_{0}\left(-z^{-1}\right)$
- Then $\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]$
$=-z^{-N}\left(H_{0}(z) H_{0}\left(z^{-1}\right)+H_{0}(-z) H_{0}\left(-z^{-1}\right)\right)=-z^{-N}$

Orthogonal Filter Banks

- Comparing the last equation with

$$
\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]=c z^{-k}
$$

we observe that $c=-1$ and $k=N$

- Using $H_{1}(z)=z^{-N} H_{0}\left(-z^{-1}\right)$ in

$$
\begin{aligned}
& G_{0}(z)=\frac{2}{c} z^{-(\ell-k)} H_{1}(-z) \\
& G_{1}(z)=-\frac{2}{c} z^{-(\ell-k)} H_{0}(-z)
\end{aligned}
$$

with $\ell=k=N$ we get
$G_{0}(z)=2 z^{-N} H_{0}\left(z^{-1}\right), \quad G_{1}(z)=2 z^{-N} H_{1}\left(z^{-1}\right)$

Orthogonal Filter Banks

- Note: If $H_{0}(z)$ is a causal FIR filter, the other three filters are also causal FIR filters
- Moreover, $\left|H_{1}\left(e^{j \omega}\right)\right|=\left|H_{0}\left(-e^{j \omega}\right)\right|$
- Thus, for a real coefficient transfer function if $H_{0}(z)$ is a lowpass filter, then $H_{1}(z)$ is a highpass filter
- In addition, $\left|G_{i}\left(e^{j \omega}\right)\right|=\left|H_{i}\left(e^{j \omega}\right)\right|, i=1,2$

Orthogonal Filter Banks

- A perfect reconstruction power-symmetric filter bank is also called an orthogonal filter bank
- The filter design problem reduces to the design of a power-symmetric lowpass filter $H_{0}(z)$
- To this end, we can design a an even-order $F(z)=H_{0}(z) H_{0}\left(z^{-1}\right)$ whose spectral factorization yields $H_{0}(z)$

Orthogonal Filter Banks

- Now, the power-symmetric condition

$$
H_{0}(z) H_{0}\left(z^{-1}\right)+H_{1}(-z) H_{1}\left(-z^{-1}\right)=1
$$

implies that $F(z)$ be a zero-phase half-band lowpass filter with a non-negative frequency response $F\left(e^{j \omega}\right)$

- Such a half-band filter can be obtained by adding a constant term K to a zero-phase half-band filter $Q(z)$ such that

$$
F\left(e^{j \omega}\right)=Q\left(e^{j \omega}\right)+K \geq 0 \quad \text { for all } \omega
$$

Orthogonal Filter Banks

- Summarizing, the steps for the design of a real-coefficient power-symmetric lowpass filter $H_{0}(z)$ are:
- (1) Design a zero-phase real-coefficient FIR half-band lowpass filter $Q(z)$ of order $2 N$ with N an odd positive integer:

$$
Q(z)=\sum_{n=-N}^{N} q[n] z^{-n}
$$

Orthogonal Filter Banks

- (2) Let δ denote the peak stopband ripple of $Q\left(e^{j \omega}\right)$
- Define $F(z)=Q(z)+\delta$ which guarantees that $F\left(e^{j \omega}\right) \geq 0$ for all ω
- Note: If $q[n]$ denotes the impulse response of $Q(z)$, then the impulse response $f[n]$ of $F(z)$ is given by

$$
f[n]=\left\{\begin{array}{cc}
q[n]+\delta, & \text { for } n=0 \\
q[n], & \text { for } n \neq 0
\end{array}\right.
$$

- (3) Determine the spectral factor $H_{0}(z)$ of $F(z)$

Orthogonal Filter Banks

- Example - Consider the FIR filter

$$
F(z)=z^{N}\left(1+z^{-1}\right)^{N+1} R(z)
$$

where $R(z)$ is a polynomial in z^{-1} of degree $N-1$ with N odd

- $F(z)$ can be made a half-band filter by choosing $R(z)$ appropriately
- This class of half-band filters has been called the binomial or maxflat filter

Orthogonal Filter Banks

- The filter $F(z)$ has a frequency response that is maximally flat at $\omega=0$ and at $\omega=\pi$
- For $N=3, R(z)=\frac{1}{16}\left(-1+4 z^{-1}-z^{-2}\right)$ resulting in

$$
F(z)=\frac{1}{16}\left(-z^{3}+9 z+16+9 z^{-1}-z^{-3}\right)
$$

which is seen to be a symmetric polynomial with 4 zeros located at $z=-1$, a zero at $z=2-\sqrt{3}$, and a zero at $z=2+\sqrt{3}$

Orthogonal Filter Banks

- The minimum-phase spectral factor is therefore the lowpass analysis filter

$$
\begin{aligned}
& H_{0}(z)=-0.3415\left(1+z^{-1}\right)^{2}\left[1-(2-\sqrt{3}) z^{-1}\right] \\
& =-0.3415\left(1+1.732 z^{-1}+0.464 z^{-2}-0.268 z^{-3}\right)
\end{aligned}
$$

- The corresponding highpass filter is given by

$$
H_{1}(z)=z^{-3} H_{0}\left(-z^{-1}\right)
$$

$$
=-0.3415\left(0.2679+0.4641 z^{-1}-1.732 z^{-2}+z^{-3}\right)
$$

Orthogonal Filter Banks

- The two synthesis filters are given by

$$
\begin{aligned}
& G_{0}(z)=2 z^{-3} H_{0}\left(z^{-1}\right) \\
& =-0.683\left(-0.2679+0.4641 z^{-1}+1.732 z^{-2}+z^{-3}\right) \\
& G_{1}(z)=2 z^{-3} H_{1}\left(z^{-1}\right) \\
& =-0.683\left(1-1.732 z^{-1}+0.4641 z^{-2}+0.2679 z^{-3}\right)
\end{aligned}
$$

- Magnitude responses of the two analysis filters are shown on the next slide

Orthogonal Filter Banks

- Comments: (1) The order of $F(z)$ is of the form $4 K+2$, where K is a positive integer
- \longrightarrow Order of $H_{0}(z)$ is $N=2 K+1$, which is

Orthogonal Filter Banks

- (2) Zeros of $F(z)$ appear with mirror-image symmetry in the z-plane with the zeros on the unit circle being of even multiplicity
- Any appropriate half of these zeros can be grouped to form the spectral factor $H_{0}(z)$
- For example, a minimum-phase $H_{0}(z)$ can be formed by grouping all the zeros inside the unit circle along with half of the zeros on the unit circle

Orthogonal Filter Banks

- Likewise, a maximum-phase $H_{0}(z)$ can be formed by grouping all the zeros outside the unit circle along with half of the zeros on the unit circle
- However, it is not possible to form a spectral factor with linear phase
- (3) The stopband edge frequency is the same for $F(z)$ and $H_{0}(z)$

Orthogonal Filter Banks

- (4) If the desired minimum stopband attenuation of $H_{0}(z)$ is $\alpha_{s} \mathrm{~dB}$, then the minimum stopband attenuation of $F(z)$ is $2 \alpha_{s}+6.02 \mathrm{~dB}$
- Example - Design a lowpass real-coefficient power-symmetric filter $H_{0}(z)$ with the following specifications: $\omega_{s}=0.63 \pi$, and $\alpha_{s}=12 \mathrm{~dB}$

Orthogonal Filter Banks

- The specifications of the corresponding zerophase half-band filter $F(z)$ are therefore: $\omega_{s}=0.63 \pi$ and $\alpha_{s}=40 \mathrm{~dB}$
- The desired stopband ripple is thus $\delta_{s}=0.01$ which is also the passband ripple
- The passband edge is at $\omega_{p}=\pi-0.63 \pi=0.37 \pi$
- Using the function remezord we first estimate the order of $F(z)$ and then using the function remez design $Q(z)$

Orthogonal Filter Banks

- The order of $F(z)$ is found to be 14 implying that the order of $H_{0}(z)$ is 7 which is odd as desired
- To determine the coefficients of $F(z)$ we add err (the maximum stopband ripple) to the central coefficient q [7]
- Next, using the function roots we determine the roots of $F(z)$ which should theretically exhibit mirror-image symmetry with double
25 roots on the unit circle

Orthogonal Filter Banks

- However, the algorithm s numerically quite sensitive and it is found that a slightly larger value than err should be added to ensure double zeros of $F(z)$ on the unit circle
- Choosing the roots inside the unit circle along with one set of unit circle roots we get the minimum-phase spectral factor $H_{0}(z)$

Orthogonal Filter Banks

- The zero locations of $F(z)$ and $H_{0}(z)$ are shown below

Orthogonal Filter Banks

- The gain responses of the two analysis filters are shown below

Orthogonal Filter Banks

- Separate realizations of the two filters $H_{0}(z)$ and $H_{1}(z)$ would require $2(N+1)$ multipliers and $2 N$ two-input adders
- However, a computationally efficient realization requiring $N+1$ multipliers and $2 N$ two-input adders can be developed by exploiting the relation

$$
H_{1}(z)=z^{-N} H_{0}\left(-z^{-1}\right)
$$

Paraunitary System

- A p-input, q-output LTI discrete-time system with a transfer matrix $\mathbf{T}_{p q}(z)$ is called a paraunitary system if $\mathbf{T}_{p q}(z)$ is a paraunitary matrix, i.e.,

$$
\tilde{\mathbf{T}}_{p q}(z) \mathbf{T}_{p q}(z)=c \mathbf{I}_{p}
$$

- Note: $\tilde{\mathbf{T}}_{p q}(z)$ is the paraconjugate of $\mathbf{T}_{p q}(z)$ given by the transpose of $\mathbf{T}_{p q}\left(z^{-1}\right)$ with each coefficient replaced by its conjugate
- \mathbf{I}_{p} is an $p \times p$ identity matrix, c is a real

Paraunitary Filter Banks

- A causal, stable paraunitary system is also a lossless system
- It can be shown that the modulation matrix

$$
\mathbf{H}^{(m)}(z)=\left[\begin{array}{cc}
H_{0}(z) & H_{1}(z) \\
H_{0}(-z) & H_{1}(-z)
\end{array}\right]
$$

of a power-symmetric filter bank is a paraunitary matrix

Paraunitary Filter Banks

- Hence, a power-symmetric filter bank has also been referred to as a paraunitary filter bank
- The cascade of two paraunitary systems with transfer matrices $\mathbf{T}_{p q}^{(1)}(z)$ and $\mathbf{T}_{q r}^{(2)}(z)$ is also paraunitary
- The above property can be utilized in designing a paraunitary filter bank without resorting to spectral factorization

Power-Symmetric FIR

Cascaded Lattice Structure

- Consider a real-coefficient FIR transfer function $H_{N}(z)$ of order N satisfying the power-symmetric condition

$$
H_{N}(z) H_{N}\left(z^{-1}\right)+H_{N}(-z) H_{N}\left(-z^{-1}\right)=K_{N}
$$

- We shall show now that $H_{N}(z)$ can be realized in the form of a cascaded lattice structure as shown on the next slide

Power-Symmetric FIR Cascaded Lattice Structure

- Define

$$
\begin{gathered}
H_{i}(z)=\frac{X_{i}(z)}{X_{0}(z)}, \quad G_{i}(z)=\frac{Y_{i}(z)}{X_{0}(z)} \\
1 \leq i \leq N
\end{gathered}
$$

Copyright © 2001, S. K. Mitra

Power-Symmetric FIR

Cascaded Lattice Structure

- From the figure we observe that

$$
\begin{aligned}
X_{1}(z) & =X_{0}(z)+k_{1} z^{-1} X_{0}(z) \\
Y_{1}(z) & =-k_{1} X_{0}(z)+z^{-1} X_{0}(z)
\end{aligned}
$$

- Therefore,

$$
H_{1}(z)=1+k_{1} z^{-1}, \quad G_{1}(z)=-k_{1}+z^{-1}
$$

- It can be easily shown that

$$
G_{1}(z)=z^{-1} H_{1}\left(-z^{-1}\right)
$$

Power-Symmetric FIR

Cascaded Lattice Structure

- Next from the figure it follows that

$$
\begin{aligned}
H_{i}(z) & =H_{i-2}(z)+k_{i} z^{-2} G_{i-2}(z) \\
G_{i}(z) & =-k_{i} H_{i-2}(z)+z^{-2} G_{i-2}(z)
\end{aligned}
$$

- It can easily be shown that

$$
G_{i}(z)=z^{-i} H_{i}\left(-z^{-1}\right)
$$

provided

$$
G_{i-2}(z)=z^{-(i-2)} H_{i-2}\left(-z^{-1}\right)
$$

Power-Symmetric FIR

 Cascaded Lattice Structure- We have shown that $G_{i}(z)=z^{-i} H_{i}\left(-z^{-1}\right)$ holds for $i=1$
- Hence the above relation holds for all odd integer values of i
- $\longrightarrow N$ must be an odd integer
- It is a simple exercise to show that both $H_{i}(z)$ and $G_{i}(z)$ satisfy the power-symmetry condition $H_{i}(z) H_{i}\left(z^{-1}\right)+H_{i}(-z) H_{i}\left(-z^{-1}\right)=K_{i}$

Power-Symmetric FIR

Cascaded Lattice Structure

- In addition, $H_{i}(z)$ and $G_{i}(z)$ are powercomplementary, i.e.,

$$
\left(1+k_{i}^{2}\right) z^{-2} G_{i-2}(z)=k_{i} H_{i}(z)+G_{i}(z)
$$

- To develop the synthesis equation we express $H_{i-2}(z)$ and $G_{i-2}(z)$ in terms of $H_{i}(z)$ and $G_{i}(z)$:

$$
\begin{aligned}
\left(1+k_{i}^{2}\right) H_{i-2}(z) & =H_{i}(z)-k_{i} G_{i}(z) \\
\left(1+k_{i}^{2}\right) z^{-2} G_{i-2}(z) & =k_{i} H_{i}(z)+G_{i}(z)
\end{aligned}
$$

Power-Symmetric FIR

Cascaded Lattice Structure

- Note: At the i-th step, the coefficient k_{i} is chosen to eliminate the coefficient of z^{-i}, the highest power of z^{-1} in $H_{i}(z)-k_{i} G_{i}(z)$
- For this choice of k_{i} the coefficient of also vanishes making $H_{i-2}(z)$ a polynomial of degree $i-2$
- The synthesis process begins with $i=N$ and compute $G_{N}(z)$ using $G_{N}(z)=z^{-N} H_{N}\left(-z^{-1}\right)$

Power-Symmetric FIR

Cascaded Lattice Structure

- Next, the transfer functions $H_{N-2}(z)$ and $G_{N-2}(z)$ are determined using the synthesis equations

$$
\begin{aligned}
\left(1+k_{i}^{2}\right) H_{i-2}(z) & =H_{i}(z)-k_{i} G_{i}(z) \\
\left(1+k_{i}^{2}\right) z^{-2} G_{i-2}(z) & =k_{i} H_{i}(z)+G_{i}(z)
\end{aligned}
$$

- This process is repeated until all coefficients of the lattice have been determined

Power-Symmetric FIR

Cascaded Lattice Structure

- Example - Consider

$$
\begin{aligned}
H_{5}(z)= & 1+0.3 z^{-1}+0.2 z^{-2}-0.376 z^{-3} \\
& -0.06 z^{-4}+0.2 z^{-5}
\end{aligned}
$$

- It can be easily verified that $H_{5}(z)$ satisfies the power-symmetric condition
- Next we form

$$
\begin{aligned}
& G_{5}(z)=z^{-5} H_{5}\left(-z^{-1}\right)=-0.2-0.06 z^{-1} \\
& \quad+0.376 z^{-2}+0.2 z^{-3}-0.3 z^{-4}+z^{-5}
\end{aligned}
$$

Power-Symmetric FIR

Cascaded Lattice Structure

- To determine $H_{5}(z)$ we first form

$$
\begin{aligned}
H_{5}(z) & -k_{5} G_{5}(z)=\left(1+0.2 k_{5}\right)+\left(0.3+0.06 k_{5}\right) z^{-1} \\
+ & \left(0.2-0.376 k_{5}\right) z^{-2}+\left(-0.376-0.2 k_{5}\right) z^{-3} \\
& +\left(-0.06+0.3 k_{5}\right) z^{-4}+\left(0.2-k_{5}\right) z^{-5}
\end{aligned}
$$

- To cancel the coefficient of z^{-5} in the above we choose

$$
k_{5}=0.2
$$

Power-Symmetric FIR

 Cascaded Lattice Structure- Then $H_{3}(z)=\frac{1}{1-k_{5}^{2}}\left[H_{5}(z)-k_{5} G_{5}(z)\right]$

$$
=\frac{1}{1.04}\left(1.04+0.312 z^{-1}+0.1248 z^{-2}-0.416 z^{-3}\right)
$$

- We next form
$G_{3}(z)=z^{-3} H_{3}\left(-z^{-1}\right)=0.4+0.12 z^{-1}-0.3 z^{-2}+z^{-3}$
- Continuing the above process we get

$$
k_{3}=-0.4, \quad k_{1}=0.3
$$

Power-Symmetric FIR Banks

- Using the method outlined for the realization of a power-symmetric transfer function, we can develop a cascaded lattice realization of the 2-channel paraunitary QMF bank
- Three important properties of the QMF lattice structure are structurally induced

Power-Symmetric FIR Banks

- (1) The QMF lattice guarantees perfect reconstruction independent of the lattice parameters
- (2) It exhibits very small coefficient sensitivity to lattice parameters as each stage remains lossless under coefficient quantization
- (3) Computational complexity is about onehalf that of any other realization as it requires $(N+1) / 2$ total number of multipliers for an order- N filter

Power-Symmetric FIR Banks

- Example - Consider the analysis filter of the previous example:

$$
\begin{aligned}
H_{7}(z)= & 0.3231+0.51935 z^{-1}+0.30134 z^{-2} \\
& -0.0781 z^{-3}-0.13767 z^{-4}+0.321 z^{-5} \\
& +0.079 z^{-6}-0.049 z^{-7}
\end{aligned}
$$

- We place a multiplier $h[0]=0.3231$ at the input and synthesize a cascade lattice structure for the normalized transfer function $H_{7}(z) / h[0]$

Power-Symmetric FIR Banks

- The lattice coefficients obtained for the normalized analysis transfer function are:

$$
\begin{array}{ll}
k_{7}=-0.15165, & k_{5}=0.2354, \\
k_{3}=-0.48393, & k_{1}=1.61
\end{array}
$$

- Note: Because of the numerical problem, the coefficients of the spectral factor obtained in the previous example are not very accurate

Power-Symmetric FIR Banks

- As a result, the coefficients of $z^{-(i-1)}$ of the transfer function $H_{i-2}(z)$ generated from the transfer function $H_{i}(z)$ using the relation

$$
H_{i-2}(z)=\frac{1}{1+k_{i}^{2}}\left[H_{i}(z)-k_{i} G_{i}(z)\right]
$$

is not exactly zero, and has been set to zero at each iteration

Power-Symmetric FIR Banks

- Two interesting properties of the cascaded lattice QMF bank can be seen by examining its multiplier coefficient values
- (1) Signs of coefficients alternate between stages
- (2) The values of the coefficients $\left\{k_{i}\right\}$ decrease with increasing i

Power-Symmetric FIR Banks

- The QMF lattice structure can be used directly to design the power-symmetric analysis filter $H_{0}(z)$ using an iterative computer-aided optimization technique
- Goal: Determine the lattice parameters k_{i} by minimizing the energy in the stopband of $H_{0}(z)$

Power-Symmetric FIR Banks

- The pertinent objective function is given by

$$
\phi=\left.\int_{\omega_{s}}^{\pi} H_{0}\left(e^{j \omega}\right)\right|^{2} d \omega
$$

- Note: The power-symmetric property ensures good passband response

Biorthogonal FIR Banks

- In the design of an orthogonal 2-channel filter bank, the analysis filter $H_{0}(z)$ is chosen as a spectral factor of the zero-phase even-order half-band filter

$$
F(z)=H_{0}(z) H_{0}\left(z^{-1}\right)
$$

- Note: The two spectral factors $H_{0}(z)$ and $H_{0}\left(z^{-1}\right)$ of $F(z)$ have the same magnitude response

Biorthogonal FIR Banks

- As a result, it is not possible to design perfect reconstruction filter banks with linear-phase analysis and synthesis filters
- However, it is possible to maintain the perfect reconstruction condition with linearphase filters by choosing a different factorization scheme

Biorthogonal FIR Banks

- To this end, the causal half-band filter $z^{-N} F(z)$ of order 2 N is factorized in the form

$$
z^{-N} F(z)=H_{0}(z) H_{1}(-z)
$$

where $H_{0}(z)$ and $H_{1}(z)$ are linear-phase filters

- The determinant of the modulation matrix $\mathbf{H}^{(m)}(z)$ is now given by $\operatorname{det}\left[\mathbf{H}^{(m)}(z)\right]=H_{0}(z) H_{1}(-z)-H_{0}(-z) H_{1}(z)=z^{-N}$

Biorthogonal FIR Banks

- Note: The determinant of the modulation matrix satisfies the perfect reconstruction condition
- The filter bank designed using the factorization scheme $z^{-N} F(z)=H_{0}(z) H_{1}(-z)$ is called a biorthogonal filter bank
- The two synthesis filters are given by

$$
G_{0}(z)=H_{1}(-z), \quad G_{1}(z)=-H_{0}(-z)
$$

Biorthogonal FIR Banks

- Example - The half-band filter

$$
F(z)=\frac{1}{16} z^{3}\left(1+z^{-1}\right)^{4}\left(-1+4 z^{-1}-z^{-2}\right)
$$

- can be factored several different ways to yield linear-phase analysis filters $H_{0}(z)$ and $H_{1}(z)$
- For example, one choice yields

$$
H_{0}(z)=\frac{1}{8}\left(-1+2 z^{-1}+6 z^{-2}+2 z^{-3}-z^{-4}\right)
$$

$$
H_{1}(z)=\frac{1}{2}\left(1-2 z^{-1}+z^{-2}\right)
$$

Biorthogonal FIR Banks

- Since the length of $H_{0}(z)$ is 5 and the length of $H_{1}(z)$ is 3 , the above set of analysis filters is known as the $5 / 3$ filterpair of Daubechies
- A plot of the gain responses of the $5 / 3$ filterpair is shown below

Biorthogonal FIR Banks

- Another choice yields the $4 / 4$ filter-pair of Daubechies

$$
\begin{aligned}
& H_{0}(z)=\frac{1}{8}\left(1+3 z^{-1}+3 z^{-2}+z^{-3}\right) \\
& H_{1}(z)=\frac{1}{2}\left(-1-3 z^{-1}+3 z^{-2}+z^{-3}\right)
\end{aligned}
$$

- A plot of the gain responses of the $4 / 4$ filterpair is shown below

