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Perfect Reconstruction Two-Perfect Reconstruction Two-
Channel FIR Filter BanksChannel FIR Filter Banks

• A perfect reconstruction two-channel FIR
filter bank with linear-phase FIR filters can
be designed if the power-complementary
requirement

between the two analysis filters            and
     is not imposed
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• To develop the pertinent design equations
we observe that the input-output relation of
the 2-channel QMF bank

can be expressed in matrix form as
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• From the previous equation we obtain

• Combining the two matrix equations we get
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where

are called the modulation matrices
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• Now for perfect reconstruction we must have
   and correspondingly

• Substituting these relations in the equation

we observe that the PR condition is satisfied
if
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• Thus, knowing the analysis filters
and           , the synthesis filters            and 

      are determined from

• After some algebra we arrive at
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where

and     is an odd positive integer
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• For FIR analysis filters            and           ,
the synthesis filters           and           will
also be FIR filters if

where c is a real number and k is a positive
integer

• In this case
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• Let            be an FIR filter of odd order N
satisfying the power-symmetric condition

• Choose
• Then
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• Comparing the last equation with

we observe that            and k = N
• Using                                    in

with                 we get
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• Note: If            is a causal FIR filter, the
other three filters are also causal FIR filters

• Moreover,
• Thus, for a real coefficient transfer function

if             is a lowpass filter, then             is a
highpass filter

• In addition,
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• A perfect reconstruction power-symmetric

filter bank is also called an orthogonal filter
bank

• The filter design problem reduces to the
design of a power-symmetric lowpass filter

• To this end, we can design a an even-order
                       whose spectral

factorization yields
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• Now, the power-symmetric condition

implies that F(z) be a zero-phase half-band
lowpass filter with a non-negative
frequency response

• Such a half-band filter can be obtained by
adding a constant term K to a zero-phase
half-band filter Q(z) such that
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• Summarizing, the steps for the design of a
real-coefficient power-symmetric lowpass
filter           are:

• (1)  Design a zero-phase real-coefficient
FIR half-band lowpass filter Q(z) of order
2N with N an odd positive integer:
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• (2) Let δ denote the peak stopband ripple of

• Define F(z) = Q(z) + δ which guarantees
that                    for all ω

• Note: If q[n] denotes the impulse response
of Q(z), then the impulse response f [n] of
F(z) is given by

• (3) Determine the spectral factor            of
F(z)
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• Example - Consider the FIR filter

where R(z) is a polynomial in       of degree
    with N odd

• F(z) can be made a half-band filter by
choosing R(z) appropriately

• This class of half-band filters has been
called the binomial or maxflat filter
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• The filter F(z) has a frequency response
that is maximally flat at ω = 0 and at ω = π

• For N = 3,
resulting in

which is seen to be a symmetric polynomial
with 4 zeros located at           , a zero at

           , and a zero at
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• The minimum-phase spectral factor is
therefore the lowpass analysis filter

• The corresponding highpass filter is given
by
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• The two synthesis filters are given by

• Magnitude responses of the two analysis
filters are shown on the next slide
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• Comments: (1) The order of F(z) is of the
form 4K+2, where K is a positive integer

•         Order of           is N = 2K+1, which is
odd as required
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• (2) Zeros of F(z) appear with mirror-image

symmetry in the z-plane with the zeros on
the unit circle being of even multiplicity

• Any appropriate half of these zeros can be
grouped to form the spectral factor

• For example, a minimum-phase           can
be formed by grouping all the zeros inside
the unit circle along with half of the zeros
on the unit circle
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• Likewise, a maximum-phase           can be
formed by grouping all the zeros outside the
unit circle along with half of the zeros on
the unit circle

• However, it is not possible to form a
spectral factor with linear phase

• (3)  The stopband edge frequency is the
same for F(z) and
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• (4) If the desired minimum stopband
attenuation of            is      dB, then the
minimum stopband attenuation of F(z) is

             dB
• Example - Design a lowpass real-coefficient

power-symmetric filter           with the
following specifications:                   ,  and

       dB
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• The specifications of the corresponding zero-

phase half-band filter F(z) are therefore:
     and              dB

• The desired stopband ripple is thus
which is also the passband ripple

• The passband edge is at
• Using the function remezord we first

estimate the order of F(z) and then using the
function remez design Q(z)
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• The order of F(z) is found to be 14 implying

that the order of            is 7 which is odd as
desired

• To determine the coefficients of F(z) we add
err (the maximum stopband ripple) to the
central coefficient q[7]

• Next, using the function roots we determine
the roots of F(z) which should theretically
exhibit mirror-image symmetry with double
roots on the unit circle
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• However, the algorithm s numerically quite
sensitive and it is found that a slightly larger
value than err should be added to ensure
double zeros of F(z) on the unit circle

• Choosing the roots inside the unit circle
along with one set of unit circle roots we get
the minimum-phase spectral factor )(zH0
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• The zero locations of F(z) and            are
shown below
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• The gain responses of the two analysis
filters are shown below
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• Separate realizations of the  two filters
and             would require 2(N+1)
multipliers and 2N two-input adders

• However, a computationally efficient
realization requiring N+1 multipliers and 2N
two-input adders can be developed by
exploiting the relation
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ParaunitaryParaunitary System System
• A p-input, q-output LTI discrete-time

system with a transfer matrix             is
called a paraunitary system if             is a
paraunitary matrix, i.e.,

• Note:             is the paraconjugate of
given by the transpose of                with
each coefficient replaced by its conjugate

•       is an         identity matrix, c is a real
constant
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• A causal, stable paraunitary system is also a
lossless system

• It can be shown that the modulation matrix

of a power-symmetric filter bank is a
paraunitary matrix
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• Hence, a power-symmetric filter bank has

also been referred to as a paraunitary filter
bank

• The cascade of two paraunitary systems
with transfer matrices             and              is
also paraunitary

• The above property can be utilized in
designing a paraunitary filter bank without
resorting to spectral factorization
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Power-Symmetric FIRPower-Symmetric FIR
Cascaded Lattice StructureCascaded Lattice Structure

• Consider a real-coefficient FIR transfer
function            of order N satisfying the
power-symmetric condition

• We shall show now that            can be
realized in the form of a cascaded lattice
structure as shown on the next slide
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Power-Symmetric FIRPower-Symmetric FIR
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• Define
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• From the figure we observe that

• Therefore,

• It can be easily shown that
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• Next from the figure it follows that

• It can easily be shown that

provided
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Power-Symmetric FIRPower-Symmetric FIR
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• We have shown that
holds for i = 1

• Hence the above relation holds for all odd
integer values of i

•           N must be an odd integer
• It is a simple exercise to show that both

and           satisfy the power-symmetry
condition
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• In addition,           and           are power-
complementary, i.e.,

• To develop the synthesis equation we
express               and               in terms of

     and          :

)(zGi)(zHi

)(zGi)(zHi

)(zGi 2−)(zHi 2−

)()()()( zGzHkzGzk iiiii +=+ −
−

2
221

)()()()( zGkzHzHk iiiii −=+ −2
21

)()()()( zGzHkzGzk iiiii +=+ −
−

2
221



Copyright © 2001, S. K. Mitra
39

Power-Symmetric FIRPower-Symmetric FIR
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• Note: At the i-th step, the coefficient     is
chosen to eliminate the coefficient of      ,
the highest power of       in

• For this choice of     the coefficient of
also vanishes making               a polynomial
of degree

• The synthesis process begins with i = N and
compute            using
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• Next, the transfer functions                and
         are determined using the synthesis

equations

• This process is repeated until all coefficients
of the lattice have been determined
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• Example - Consider

• It can be easily verified that            satisfies
the power-symmetric condition

• Next we form
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• To determine            we first form

• To cancel the coefficient of       in the above
we choose
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• Then

• We next form

• Continuing the above process we get
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• Using the method outlined for the
realization of a power-symmetric transfer
function, we can develop a cascaded lattice
realization of the 2-channel paraunitary
QMF bank

• Three important properties of the QMF
lattice structure are structurally induced
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• (1) The QMF lattice guarantees perfect

reconstruction independent of the lattice
parameters

• (2) It exhibits very small coefficient
sensitivity to lattice parameters as each
stage remains lossless under coefficient
quantization

• (3) Computational complexity is about one-
half that of any other realization as it
requires (N+1)/2 total number of multipliers
for an order-N filter



Copyright © 2001, S. K. Mitra
46

Power-Symmetric FIR BanksPower-Symmetric FIR Banks
• Example - Consider the analysis filter of the

previous example:

• We place a multiplier h[0] = 0.3231 at the
input and synthesize a cascade lattice
structure for the normalized transfer
function
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• The lattice coefficients obtained for the
normalized analysis transfer function are:

• Note:  Because of the numerical problem,
the coefficients of the spectral factor
obtained in the previous example are not
very accurate
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• As a result, the coefficients of             of the
transfer function               generated from
the transfer function            using the
relation

is not exactly zero, and has been set to zero
at each iteration
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• Two interesting properties of the cascaded
lattice QMF bank can be seen by examining
its multiplier coefficient values

• (1) Signs of coefficients alternate between
stages

• (2) The values of the coefficients
decrease with increasing i

}{ ik
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• The QMF lattice structure can be used
directly to design the power-symmetric
analysis filter            using an iterative
computer-aided optimization technique

• Goal: Determine the lattice parameters
by minimizing the energy in the stopband of
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• The pertinent objective function is given by

• Note: The power-symmetric property
ensures good passband response
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• In the design of an orthogonal 2-channel
filter bank, the analysis filter            is
chosen as a spectral factor of the zero-phase
even-order half-band filter

• Note: The two spectral factors             and
         of F(z) have the same magnitude

response
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• As a result, it is not possible to design
perfect reconstruction filter banks with
linear-phase analysis and synthesis filters

• However, it is possible to maintain the
perfect reconstruction condition with linear-
phase filters by choosing a different
factorization scheme
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• To this end, the causal half-band filter
of order 2N is factorized in the form

where            and            are linear-phase
filters

• The determinant of the modulation matrix
          is now given by
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• Note: The determinant of the modulation
matrix satisfies the perfect reconstruction
condition

• The filter bank designed using the
factorization scheme
is called a biorthogonal filter bank

• The two synthesis filters are given by
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• Example - The half-band filter

• can be factored several different ways to
yield linear-phase analysis filters            and

• For example, one choice yields
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• Since the length of            is 5 and the

length of            is 3, the above set of
analysis filters is known as the 5/3 filter-
pair of Daubechies

• A plot of the gain responses of the 5/3 filter-
pair is shown below
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• Another choice yields the 4/4 filter-pair of

Daubechies

• A plot of the gain responses of the 4/4 filter-
pair is shown below
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